link capacity
Recently Published Documents


TOTAL DOCUMENTS

279
(FIVE YEARS 30)

H-INDEX

24
(FIVE YEARS 3)

Author(s):  
Dr. D. Chitra ◽  
K. Ilakkiya

This paper considers wireless networks in which various paths are obtainable involving each source and destination. It is allowing each source to tear traffic among all of its existing paths, and it may conquer the lowest achievable number of transmissions per unit time to sustain a prearranged traffic matrix. Traffic bound in contradictory instructions in excess of two wireless hops can utilize the “reverse carpooling” advantage of network coding in order to decrease the number of transmissions used. These call such coded hops “hyper-links.” With the overturn carpooling procedure, longer paths might be cheaper than shorter ones. However, convenient is an irregular situation among sources. The network coding advantage is realized only if there is traffic in both directions of a shared path. This project regard as the problem of routing amid network coding by egotistic agents (the sources) as a potential game and develop a method of state-space extension in which extra agents (the hyper-links) decouple sources’ choices from each other by declaring a hyper-link capacity, allowing sources to split their traffic selfishly in a distributed fashion, and then altering the hyper-link capacity based on user actions. Furthermore, each hyper-link has a scheduling constraint in stipulations of the maximum number of transmissions authorized per unit time. Finally these project show that our two-level control scheme is established and verify our investigative insights by simulation.


2021 ◽  
Author(s):  
Muhammad Saqlain ◽  
Nazar Muhammad Idrees ◽  
Shiwei Wang ◽  
Lu Zhang ◽  
Xianbin Yu

ETRI Journal ◽  
2021 ◽  
Author(s):  
Akhtar Nawaz Khan ◽  
Zawar H. Khan ◽  
Khurram S. Khattak ◽  
Abdul Hafeez

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Jie Liu ◽  
Paul M. Schonfeld ◽  
Yong Yin ◽  
Qiyuan Peng

Link capacity reductions, which occur often, degrade the service quality and performance of urban rail transit (URT) networks. To measure the reliability of a URT network when link capacity reductions occur in a given time period, the passengers’ generalized travel cost (GTC) is computed and passengers are divided into three categories. The GTC considers here the crowding in trains, seat availability, and perceived travel time. Passengers whose relative increase in GTC on a URT is below or above a preset threshold belong to category I or II, respectively, while passengers who cannot travel on the URT due to insufficient capacities on their paths belong to category III. Passenger trips in categories I are acceptable since their GTC increases only slightly with link capacity reductions. The fraction of acceptable trip (FAT) and total GTC increase ratio (TGCR) in a given time period are defined here as the network’s reliability and unreliability metrics, respectively. The ratio of affected passenger trip (RAPT) is proposed to identify each line’s most critical links. The reliability and unreliability metrics of Wuhan’s URT network during evening peak hours are computed when the capacities of the most critical link or multiple most critical links are reduced. The results show that the proposed RAPT indicator is effective in identifying the most critical links that greatly affect the reliability and performance of a URT network. For capacity reductions on a line’s most critical link, the proposed method can determine the capacity reduction ratio corresponding to network’s high FAT and low TGCR as well as the priorities of lines needing emergency measures to maintain high network reliability and performance. For capacity reductions on critical links of multiple lines, the proposed method can identify the number of reduction links and the capacity reduction ratio that the network can withstand while maintaining its reliability and performance above a specified level.


Sign in / Sign up

Export Citation Format

Share Document