On a nonlinear integro-differential equation of Fredholm type

Author(s):  
Mohammed Charif Bounaya ◽  
Samir Lemita ◽  
Mourad Ghiat ◽  
Mohamed Zine Aissaoui
Axioms ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 121
Author(s):  
Tursun K. Yuldashev ◽  
Erkinjon T. Karimov

The questions of the one-value solvability of an inverse boundary value problem for a mixed type integro-differential equation with Caputo operators of different fractional orders and spectral parameters are considered. The mixed type integro-differential equation with respect to the main unknown function is an inhomogeneous partial integro-differential equation of fractional order in both positive and negative parts of the multidimensional rectangular domain under consideration. This mixed type of equation, with respect to redefinition functions, is a nonlinear Fredholm type integral equation. The fractional Caputo operators’ orders are smaller in the positive part of the domain than the orders of Caputo operators in the negative part of the domain under consideration. Using the method of Fourier series, two systems of countable systems of ordinary fractional integro-differential equations with degenerate kernels and different orders of integro-differentation are obtained. Furthermore, a method of degenerate kernels is used. In order to determine arbitrary integration constants, a linear system of functional algebraic equations is obtained. From the solvability condition of this system are calculated the regular and irregular values of the spectral parameters. The solution of the inverse problem under consideration is obtained in the form of Fourier series. The unique solvability of the problem for regular values of spectral parameters is proved. During the proof of the convergence of the Fourier series, certain properties of the Mittag–Leffler function of two variables, the Cauchy–Schwarz inequality and Bessel inequality, are used. We also studied the continuous dependence of the solution of the problem on small parameters for regular values of spectral parameters. The existence and uniqueness of redefined functions have been justified by solving the systems of two countable systems of nonlinear integral equations. The results are formulated as a theorem.


Author(s):  
Sarvar K. ZARIFZODA ◽  
◽  
Raim N. ODINAEV ◽  

For a class of second-order partial integro-differential equations with a power singularity and logarithmic singularity in the kernel, integral representations of the solution manifold in terms of arbitrary constants are obtained in the class of functions vanishing with a certain asymptotic behavior. Although the kernel of the given equation is not a Fredholm type kernel, the solution of the studied equation in a class of vanishing functions is found in an explicit form. We represent a second-order integro-differential equation as a product of two first-order integro-differential operators. For these one-dimensional integro-differential operators, in the cases when the roots of the corresponding characteristic equations are real and different, real and equal and complex and conjugate, the inverse operators are found. It is found that the presence of power singularity and logarithmic singularity in the kernel affects the number of arbitrary constants in the general solution. This number, depending on the roots of the corresponding characteristic equations, can reach nine. Also, the cases when the given integro-differential equation has a unique solution are found. The correctness of the obtained results with the help of the detailed solutions of concrete examples are shown. The method of solving the given problem can be used for solving model and nonmodel integro-differential equations with a higher order power singularity and logarithmic singularity in the kernel.


Author(s):  
Mohammed Charif Bounaya ◽  
Samir Lemita ◽  
Mourad Ghiat ◽  
Mohamed Zine Aissaoui

2019 ◽  
Vol 8 (4) ◽  
pp. 36
Author(s):  
Samir H. Abbas

This paper studies the existence and uniqueness solution of fractional integro-differential equation, by using some numerical graphs with successive approximation method of fractional integro –differential equation. The results of written new program in Mat-Lab show that the method is very interested and efficient. Also we extend the results of Butris [3].


Author(s):  
Abdul Khaleq O. Al-Jubory ◽  
Shaymaa Hussain Salih

In this work, we employ a new normalization Bernstein basis for solving linear Freadholm of fractional integro-differential equations  nonhomogeneous  of the second type (LFFIDEs). We adopt Petrov-Galerkian method (PGM) to approximate solution of the (LFFIDEs) via normalization Bernstein basis that yields linear system. Some examples are given and their results are shown in tables and figures, the Petrov-Galerkian method (PGM) is very effective and convenient and overcome the difficulty of traditional methods. We solve this problem (LFFIDEs) by the assistance of Matlab10.   


Sign in / Sign up

Export Citation Format

Share Document