A deep learning approach for brain tumour detection system using convolutional neural networks

Author(s):  
T. Kalaiselvi ◽  
S.T. Padmapriya ◽  
P. Sriramakrishnan ◽  
K. Somasundaram
2020 ◽  
Author(s):  
Pedro V. A. de Freitas ◽  
Antonio J. G. Busson ◽  
Álan L. V. Guedes ◽  
Sérgio Colcher

A large number of videos are uploaded on educational platforms every minute. Those platforms are responsible for any sensitive media uploaded by their users. An automated detection system to identify pornographic content could assist human workers by pre-selecting suspicious videos. In this paper, we propose a multimodal approach to adult content detection. We use two Deep Convolutional Neural Networks to extract high-level features from both image and audio sources of a video. Then, we concatenate those features and evaluate the performance of classifiers on a set of mixed educational and pornographic videos. We achieve an F1-score of 95.67% on the educational and adult videos set and an F1-score of 94% on our test subset for the pornographic class.


2020 ◽  
Vol 12 (7) ◽  
pp. 1092
Author(s):  
David Browne ◽  
Michael Giering ◽  
Steven Prestwich

Scene classification is an important aspect of image/video understanding and segmentation. However, remote-sensing scene classification is a challenging image recognition task, partly due to the limited training data, which causes deep-learning Convolutional Neural Networks (CNNs) to overfit. Another difficulty is that images often have very different scales and orientation (viewing angle). Yet another is that the resulting networks may be very large, again making them prone to overfitting and unsuitable for deployment on memory- and energy-limited devices. We propose an efficient deep-learning approach to tackle these problems. We use transfer learning to compensate for the lack of data, and data augmentation to tackle varying scale and orientation. To reduce network size, we use a novel unsupervised learning approach based on k-means clustering, applied to all parts of the network: most network reduction methods use computationally expensive supervised learning methods, and apply only to the convolutional or fully connected layers, but not both. In experiments, we set new standards in classification accuracy on four remote-sensing and two scene-recognition image datasets.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 59069-59080 ◽  
Author(s):  
Peng Jiang ◽  
Yuehan Chen ◽  
Bin Liu ◽  
Dongjian He ◽  
Chunquan Liang

Newspaper articles offer us insights on several news. They can be one of many categories like sports, politics, Science and Technology etc. Text classification is a need of the day as large uncategorized data is the problem everywhere. Through this study, We intend to compare several algorithms along with data preprocessing approaches to classify the newspaper articles into their respective categories. Convolutional Neural Networks(CNN) is a deep learning approach which is currently a strong competitor to other classification algorithms like SVM, Naive Bayes and KNN. We hence intend to implement Convolutional Neural Networks - a deep learning approach to classify our newspaper articles, develop an understanding of all the algorithms implemented and compare their results. We also attempt to compare the training time, prediction time and accuracies of all the algorithms.


Author(s):  
João Sauer ◽  
Marco Boaretto ◽  
Edson Gnatkovski Gruska ◽  
arthur canciglieri ◽  
Gabriel Herman Bernardim Andrade ◽  
...  

2021 ◽  
Vol 148 ◽  
pp. 104402
Author(s):  
Ju-Yi Hung ◽  
Chandrashan Perera ◽  
Ke-Wei Chen ◽  
David Myung ◽  
Hsu-Kuang Chiu ◽  
...  

2020 ◽  
Vol 10 (3) ◽  
pp. 5769-5774 ◽  
Author(s):  
P. Chakraborty ◽  
C. Tharini

Automatic disease detection systems based on Convolutional Neural Networks (CNNs) are proposed in this paper for helping the medical professionals in the detection of diseases from scan and X-ray images. CNN based classification helps decision making in a prompt manner with high precision. CNNs are a subset of deep learning which is a branch of Artificial Intelligence. The main advantage of CNNs compared to other deep learning algorithms is that they require minimal pre-processing. In the proposed disease detection system, two medical image datasets consisting of Optical Coherence Tomography (OCT) and chest X-ray images of 1-5 year-old children are considered and used as inputs. The medical images are processed and classified using CNN and various performance measuring parameters such as accuracy, loss, and training time are measured. The system is then implemented in hardware, where the testing is done using the trained models. The result shows that the validation accuracy obtained in the case of the eye dataset is around 90% whereas in the case of lung dataset it is around 63%. The proposed system aims to help medical professionals to provide a diagnosis with better accuracy thus helping in reducing infant mortality due to pneumonia and allowing finding the severity of eye disease at an earlier stage.


In this chapter, the authors present their approach to cyberbullying detection with the use of various traditional classifiers, including a deep learning approach. Research has tackled the problem of cyberbullying detection during recent years. However, due to complexity of language used in cyberbullying, the results obtained with traditional classifiers has remained only mildly satisfying. In this chapter, the authors apply a number of traditional classifiers, used also in previous research, to obtain an objective view on to what extent each of them is suitable to the task. They also propose a novel method to automatic cyberbullying detection based on convolutional neural networks and increased feature density. The experiments performed on actual cyberbullying data showed a major advantage of the presented approach to all previous methods, including the two best performing methods so far based on SO-PMI-IR and brute-force search algorithm, presented in previous two chapters.


Sign in / Sign up

Export Citation Format

Share Document