scholarly journals Energy and Exergy Analysis of a Steam Power Plant in Suda

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Osman Shamet ◽  
Rana Ahmed ◽  
Kamal Nasreldin Abdalla

In this study, the energy and exergy analysis of Garri 4 power plant in Sudan is presented. The primary objective of this paper is to identify the major source of irreversibilities in the cycle. The equipment of the power plant has been analyzed individually. Values regarding heat loss and exergy destruction have been presented for each equipment. The results confirmed that the condenser was the main source for energy loss (about 67%), while ex­ergy analysis revealed that the boiler contributed to the largest percentage of exergy destruction (about 84.36%) which can be reduced by preheating the inlet water to a sufficient temperature and controlling air to fuel ratio.

2019 ◽  
Vol 125 ◽  
pp. 13003
Author(s):  
MSK. Tony Suryo U ◽  
Eflita Yohana ◽  
Syarif Dwi Priyanto ◽  
Ignatius Apryando M. ◽  
Tauviqirrahman

Steam power plant Generation of Tanjung Jati B 3rd unit has a capacity of 660 MW. The power plant operational in 2011, because of the long operation process, there will be a decrease in performance. The plant needs to be researched to analyze the performance and losses that occurs in the power plant. Because this also affects the environment if the efficiency of the power plant is high, it can reduce the use of coal. Because coal becomes air pollution and environmental pollution, which can cause acid rain, water pollution, and global warming. This research is used to analyze energy and exergy on the components of a steam power plant. From the results of this research, the largest of destruction exergy boiler is 881.08 MW and the exergetic efficiency is 48.66%. While the rate of the smallest destruction exergy in LPH 3 is 0.6 MW and the exergetic efficiency is 94.45%. The contribution of the largest Losses energy in the boiler is 231 MW and energetic efficiency is 87.05%. While the contribution of the smallest energy Losses in HPH 6 is 0.74 MW and energetic efficiency is 99.23%.


Author(s):  
Bayu Rudiyanto ◽  
Tri Ajeng Kusuma Wardani ◽  
Saiful Anwar ◽  
Lutfi Al Jamali ◽  
Totok Prasetyo ◽  
...  

Author(s):  
Sumit Kumar ◽  
Dileep Kumar ◽  
Rizwan Ahmed Memon ◽  
Majid Ali Wassan ◽  
Sikandar Ali Mir

In this paper, energy and exergy analysis has been conducted on a subcritical coal fired power plant of Wisconsin Power and Light Company, USA to investigate the steam cycle energy and exergy efficiency. The cycle is analyzed by developing a mathematical model using its operating and design parameters. The analysis is performed using EES (Engineering Equation Solver). The energy analysis shows that major share of energy loss occurs in condenser i.e. 72% of total cycle energy loss, whereas, exergy analysis shows that 83.09% total exergy destruction of cycle occurs in boiler.Furthermore, the simulation results are compared with actual with an absolute error of 3.1%. Additionally, the parametric study is performed to examine the effects of various operating parameters such as main steam pressure and temperature, condenser pressure, terminal and drain cooler temperature difference on net power output, energy andexergy efficiency of cycle. The parametric study shows that the plant has maximum energy and exergy efficiencies at steam pressure of 2500psi, condenser pressure of 1.0psi and main steam temperature of 1100oF. Furthermore, these parameters do not seem to change energy and exergy efficiencies significantly.


Author(s):  
Mohammad Hasan Khoshgoftar Manesh ◽  
Majid Amidpour ◽  
Hasan Khodaei Jalal Abadi

Exergy, exergoeconomic and combined pinch and exergy analysis are beneficial methods that can be applied for design or performance evaluation of process systems or thermal power plants; however, these methods are usually applied individually. In this paper, these methods have been applied for 423 MW NEKA combined cycle power plant located in NEKA at north of Iran and 315-MW RAMIN steam power plant located in Ahvaz at south of Iran as real cases to evaluation and comparison of performance of each component in different load conditions simultaneously. To perform these analysis for both plants, a computer program is developed from thermodynamic modeling of the plant as simulator. With the thermodynamic properties of the most significant mass and energy flow stream being obtained from the plant, the simulator can reproduce the cycle behavior for different operating conditions with relative errors less than 4.2%. The models of computer program are refined using data from designed performance test in these plants. After thermodynamic simulation, this program can calculate exergy of the flows. In addition, it can perform exergoeconomic analysis using thermoeconomic model of both plants that are defined based on the functionally of each component by the fuel-product definition. The costs of all flows in production structure can be calculated by solving a set equation including thermoeconomic modeling of each plant. Furthermore, it is helpful to display the system information graphically for one to visualize the performance of system in different conditions by applying combined pinch-exergy analysis. Meanwhile, due to importance of exergy destruction cost and better understanding plant performance, the new variables have been defined as Exergy Destruction Level (EDL) and Exergy Cost Destruction Level (ECDL). In this respect, new graphical representation has been developed for showing performance of each component based on exergoeconomic analysis. In this regard, this computer program can generate improved combined pinch-exergy and EDL/ ECDL representation.


Sign in / Sign up

Export Citation Format

Share Document