Application of an artificial neural network in wastewater quality monitoring: prediction of water quality index

2008 ◽  
Vol 3 (2) ◽  
pp. 160 ◽  
Author(s):  
Ayan Hore ◽  
Suman Dutta ◽  
Siddhartha Datta ◽  
Chiranjib Bhattacharjee
Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5875
Author(s):  
Monika Kulisz ◽  
Justyna Kujawska ◽  
Bartosz Przysucha ◽  
Wojciech Cel

Groundwater quality monitoring in the vicinity of drilling sites is crucial for the protection of water resources. Selected physicochemical parameters of waters were marked in the study. The water was collected from 19 wells located close to a shale gas extraction site. The water quality index was determined from the obtained parameters. A secondary objective of the study was to test the capacity of the artificial neural network (ANN) methods to model the water quality index in groundwater. The number of ANN input parameters was optimized and limited to seven, which was derived using a multiple regression model. Subsequently, using the stepwise regression method, models with ever fewer variables were tested. The best parameters were obtained for a network with five input neurons (electrical conductivity, pH as well as calcium, magnesium and sodium ions), in addition to five neurons in the hidden layer. The results showed that the use of the parameters is a convenient approach to modeling water quality index with satisfactory and appropriate accuracy. Artificial neural network methods exhibited the capacity to predict water quality index at the desirable level of accuracy (RMSE = 0.651258, R = 0.9992 and R2 = 0.9984). Neural network models can thus be used to directly predict the quality of groundwater, particularly in industrial areas. This proposed method, using advanced artificial intelligence, can aid in water treatment and management. The novelty of these studies is the use of the ANN network to forecast WQI groundwater in an area in eastern Poland that was not previously studied—in Lublin.


MethodsX ◽  
2019 ◽  
Vol 6 ◽  
pp. 1021-1029 ◽  
Author(s):  
Majid RadFard ◽  
Mozhgan Seif ◽  
Amir Hossein Ghazizadeh Hashemi ◽  
Ahmad Zarei ◽  
Mohammad Hossein Saghi ◽  
...  

Author(s):  
Binayini Bhagat ◽  
D. P. Satapathy

Water is one of the prime elements responsible for subsistence on the earth. The scarcity of potable water is gradually increasing with the increase in population. The surface water quality is a very crucial and sensitive issue and is also a great environmental concern worldwide. Surface water pollution by physical, chemical, radiological and biological contaminants can be considered as an epidemic at times, all over the world. The present research work aims at assessing the water quality index (WQI) in the surface water of Brahmani river basin in Odisha by monitoring five sampling locations. The surface water samples data were subjected to comprehensive physico-chemical analysis besides general parameters. The monthly water quality parameters were collected and analyzed from five selected gauging stations of Odisha during the months of January to December from 2011 to 2016. Eleven physical, chemical and biological water quality parameters viz. pH, Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Electrical Conductivity(EC), Nitrogen as nitrate (Nitrate-N), Total Coli-form Bacteria(TC), Fecal Coli-form Bacteria(FC), Chemical Oxygen Demand (COD), Nitrogen as ammonia (NH4-N), Total Alkalinity (TA) as CaCO3, Total Hardness (TH) as CaCO3 were selected for the analysis. Analysis of water quality for Brahmani River is done by Water Quality Index (WQI). Prediction of water quality index is done by using Artificial Neural Network (ANN).  It is apparent from WQI values that Talcher and Panposh recorded the water quality as moderate to poor and nearly unsuitable during the years 2011-2016 indicating water as not safe for domestic purposes and needs treatment, the WQI values of Kamalanga ranged from good to poor and the WQI values of Aul and Pottamundai ranged from good to moderate. Eleven physico-chemical parameters were involved in this analysis as input variables and water quality index as output variable. Two models were proposed to identify the most effective model in an attempt to predict the WQI.  Correlation between the parameters was carried out to find out the significant parameters affecting WQI. The ANN developed was trained and tested successfully using the available data sets and the performance of ANN models were determined by coefficient of determination (R2) and Root Mean Square Error (RMSE). Results show that ANN-1 gives the higher value of R2 in summer, monsoon and winter season (0.989, 0.976 and 0.959) and low RMSE (2.1865, 2.0768 and1.9657) as compared to that of the second model (ANN-2) which gives R2 value as 0.933, 0.945 and 0.943 and RMSE value as 2.8765, 2.5456 and 1.2745 for summer, monsoon and winter seasons respectively. Hence this study triggered the use of Artificial Neural Network to predict the Water Quality Index (WQI) rather than using the traditional WQI equation.


2015 ◽  
Vol 87 (2) ◽  
pp. 99-112 ◽  
Author(s):  
Nabeel M. Gazzaz ◽  
Mohd Kamil Yusoff ◽  
Mohammad Firuz Ramli ◽  
Hafizan Juahir ◽  
Ahmad Zaharin Aris

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. I. Ubah ◽  
L. C. Orakwe ◽  
K. N. Ogbu ◽  
J. I. Awu ◽  
I. E. Ahaneku ◽  
...  

AbstractThis study was aimed at analyzing the water quality of Ele River Nnewi, Anambra State for irrigation purposes with a view to predicting a one-year water quality index using Artificial Neural Network (ANN). Water pollution has posed a major problem and identifying the points of pollution in the River system is a very difficult task. To overcome this task, the need to determine the pollution level arose by modeling and predicting four water quality parameters at four (4) different locations using the Artificial Neural Network. These parameters include the pH, Total Dissolved Solids (TDS), Electrical Conductivity (EC), and Sodium (Na), respectively. The water quality results showed that the pH values which ranges from 6.01 to 6.87 were within the FAO standard in all the points for both rainy and dry seasons, whereas the TDS (mg/l), EC (dS/m) and Na (mg/l) parametric values range from 2001 to 2506, 3.01 to 5.76, and 40.42 to 73.45 respectively, were above the FAO standard from point 1 to point 3 and falls within the FAO standard at point 4 with values ranging from 1003 to 1994, 2.01 to 2.78 and 31.24 to 39.44, respectively. However, during the dry season, the TDS, EC, and Na values range from 2002 to 2742, 3.04 to 5.82 and 40.14 to 88.45 respectively, were all above the FAO standard. Generally, the artificial neural network modeled the actual water quality data set very well with good prediction. The training model performance evaluation shows that the R2 values ranges from 0.981 to 0.990, 0.981 to 0.988, 0.981 to 0.989 and 0981 to 0.989, for pH, TDS, EC, and Na. The testing model performance shows that the R2 value ranges from 0.952 to 0.967, 0.953 to 0.970, 0.951 to 0.967and 0.953 to 0.968, for pH, TDS, EC and Na while the forecast performance evaluation shows that the R2 values ranges from 0.945 to 0.968, 0.946 to 0.968, 0.944 to 0.967 and 0.949 to 0.965 for pH, TDS, EC and Na respectively. It was also observed that the Root Mean Squared Error (RMSE) ranges from 0.022 to 0.088, 0.012 to 0.087, 0.015 to 0.085 and 0.014 to 0.084 for pH, TDS, EC and Na, respectively. Information from this study will serve as a guide to researchers on the water quality index for irrigation purposes. Also, it will guide the government and agencies on policy, management and decision-making on water resources.


Sign in / Sign up

Export Citation Format

Share Document