Free-surface oscillations control of high speed manipulated liquids

2019 ◽  
Vol 1 (4) ◽  
pp. 347
Author(s):  
Marouane Idelhoucine ◽  
Hassan Hammouri ◽  
Sami Othman ◽  
Frédéric Roumanet
Author(s):  
Frédéric Roumanet ◽  
Sami Othman ◽  
Marouane Idelhoucine ◽  
Hassan Hammouri

Author(s):  
Matthieu A. Andre ◽  
Philippe M. Bardet

Shear instabilities induced by the relaxation of laminar boundary layer at the free surface of a high speed liquid jet are investigated experimentally. Physical insights into these instabilities and the resulting capillary wave growth are gained by performing non-intrusive measurements of flow structure in the direct vicinity of the surface. The experimental results are a combination of surface visualization, planar laser induced fluorescence (PLIF), particle image velocimetry (PIV), and particle tracking velocimetry (PTV). They suggest that 2D spanwise vortices in the shear layer play a major role in these instabilities by triggering 2D waves on the free surface as predicted by linear stability analysis. These vortices, however, are found to travel at a different speed than the capillary waves they initially created resulting in interference with the waves and wave growth. A new experimental facility was built; it consists of a 20.3 × 146.mm rectangular water wall jet with Reynolds number based on channel depth between 3.13 × 104 to 1.65 × 105 and 115. to 264. based on boundary layer momentum thickness.


2009 ◽  
Vol 53 (03) ◽  
pp. 137-150
Author(s):  
Francis Noblesse ◽  
Gérard Delhommeau ◽  
Chi Yang

The linearized potential flow resulting from a distribution of pressure that advances at constant speed along a straight path at the free surface of calm water, of effectively infinite depth and lateral extent, is considered. A practical method for evaluating the free-surface elevation caused by the moving free-surface pressure patch—which can be used to model steady flows of air-cushion vehicles, high-speed planing boats, surface-effect ships, and some types of hybrid ships—is given. The key ingredient of this method is a highly simplified analytical approximation to the local-flow component in the expression for the Green function associated with the classic Michell-Kelvin linearized free-surface boundary condition.


1981 ◽  
Vol 25 (01) ◽  
pp. 44-61
Author(s):  
C. H. Kim ◽  
S. Tsakonas

The analysis presents a practical method for evaluating the added-mass and damping coefficients of a heaving surface-effect ship in uniform translation. The theoretical added-mass and damping coefficients and the heave response show fair agreement with the corresponding experimental values. Comparisons of the coupled aero-hydrodynamic and uncoupled analytical results with the experimental data prove that the uncoupled theory, dominant for a long time, that neglects the free-surface effects is an oversimplified procedure. The analysis also provides means of estimating the wave elevation of the free surface, the escape area at the stern and the volume which are induced by a heaving surface-effect ship in uniform translation in otherwise calm water. Computational procedures have been programmed in the FORTRAN IV language and adapted to the PDP-10 high-speed digital computer.


2020 ◽  
Vol 32 (9) ◽  
pp. 092111
Author(s):  
Ehsan Mahravan ◽  
Hamid Naderan ◽  
Ebrahim Damangir

Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1301 ◽  
Author(s):  
Hongbo Chen ◽  
Chuansheng Wang ◽  
Imdad Ali ◽  
Haoyi Li ◽  
Xiaoqing Chen ◽  
...  

Numerous jets can be generated simultaneously on a nozzle by needleless melt electrospinning technology which has the advantages of solvent-free residues and environmental friendliness; and potential industrial application prospects. In this paper, the linear annular tip nozzle was taken as the research object, and the high-speed image acquisition of the jets generation and distribution process of annular tip nozzle was carried out and compared with that of straight-line tip nozzle. The results showed that the repulsive force between the jets caused a slight adjustment in the position of the jets on the free surface, the force between the jets on the annular closed curve canceled each other and eventually reached the equilibrium state, making the position of the jets stable and the distance between the jets the same, and the distance between the jets was related to the intensity of the induced electric field at the tip of the nozzle. Relevant conclusions can provide scientific and practical guidance for the design of needleless electrospinning nozzles on free surface in order to achieve uniform and efficient preparation of ultrafine fibers.


Sign in / Sign up

Export Citation Format

Share Document