A comparison based on the calculation of some hadron doses in addition to the secondary neutron fluence using the FLUKA Monte Carlo code

Author(s):  
Abdessamad Didi ◽  
Adil Aknouch ◽  
Jamal Eddine Derkaoui ◽  
Hassane Dekhissi ◽  
Mohammed Yjjou
Author(s):  
Cécile-Aline Gosmain ◽  
Sylvain Rollet ◽  
Damien Schmitt

In the framework of surveillance program dosimetry, the main parameter in the determination of the fracture toughness and the integrity of the reactor pressure vessel (RPV) is the fast neutron fluence on pressure vessel. Its calculated value is extrapolated using neutron transport codes from measured reaction rate value on dosimeters located on the core barrel. EDF R&D has developed a new 3D tool called EFLUVE3D based on the adjoint flux theory. This tool is able to reproduce on a given configuration the neutron flux, fast neutron fluence and reaction rate or dpa results of an exact Monte Carlo calculation with nearly the same accuracy. These EFLUVE3D calculations does the Source*Importance product which allows the calculation of the flux, the neutronic fluence (flux over 1MeV integrated on time) received at any point of the interface between the skin and the pressure vessel but also at the capsules of the pressurized water reactor vessels surveillance program and the dpa and reaction rates at different axial positions and different azimuthal positions of the vessel as well as at the surveillance capsules. Moreover, these calculations can be carried out monthly for each of the 58 reactors of the French current fleet in challenging time (less than 10mn for the total fluence and reaction rates calculations considering 14 different neutron sources of a classical power plant unit compared to more than 2 days for a classic Monte Carlo flux calculation at a given neutron source). The code needs as input: - for each reaction rate, the geometric importance matrix produced for a 3D pin by pin mesh on the basis of Green’s functions calculated by the Monte Carlo code TRIPOLI; - the neutron sources calculated on assemblies data (enrichment, position, fission fraction as a function of evolution), pin by pin power and irradiation. These last terms are based on local in-core activities measurements extrapolated to the whole core by use of the EDF core calculation scheme and a pin by pin power reconstruction methodology. This paper presents the fundamental principles of the code and its validation comparing its results to the direct Monte Carlo TRIPOLI results. Theses comparisons show a discrepancy of less than 0,5% between the two codes equivalent to the order of magnitude of the stochastic convergence of Monte Carlo results.


2020 ◽  
Vol 189 (2) ◽  
pp. 190-197 ◽  
Author(s):  
Serdar Charyyev ◽  
C-K Chris Wang

Abstract New technique is trending in spatially fractionated radiotherapy with protons to utilize the spot scanning together with a physical collimator to obtain minibeams. The primary goal of this study is to quantify ambient neutron dose equivalent (${H}^{\ast }(10)$) due to the secondary neutrons when physical collimator is used to achieve desired minibeams. The ${H}^{\ast }(10)$ per treatment proton dose (D) was assessed using Monte Carlo code TOPAS and measured using WENDI-II detector at different angles (135, 180, 225 and 270 degrees) and distances (11 cm, 58 and 105 cm) from the phantom for two cases: with and without physical collimation. Without collimation $\frac{H^{\ast }(10)}{D}$ varied from 0.0013 to 0.242 mSv/Gy. With collimation $\frac{H^{\ast }(10)}{D}$ varied from 0.017 to 3.23 mSv/Gy. Results show that the secondary neutron dose will increase tenfold when the physical collimator is used. Regardless, it will be low and comparable to the neutron dose produced by conventional passive-scattered proton beams.


Kerntechnik ◽  
2015 ◽  
Vol 80 (4) ◽  
pp. 394-401 ◽  
Author(s):  
S. S. Aleshin ◽  
S. S. Gorodkov ◽  
A. I. Shcherenko

2020 ◽  
Vol 1548 ◽  
pp. 012020
Author(s):  
M De Simoni ◽  
M Fischetti ◽  
E Gioscio ◽  
M Marafini ◽  
R Mirabelli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document