Cutting-fluid selection using complex proportional assessment method

Author(s):  
Rajesh Attri ◽  
Nikhil Dev ◽  
Krishan Kumar ◽  
Amit Rana
2021 ◽  
Vol 15 (1) ◽  
pp. 7860-7873
Author(s):  
S. Dhanalakshmi ◽  
T. Rameshbabu

The choice of most appropriate cutting liquid in any machining process should be performed to attain maximum benefit. Selection of cutting fluid needs more than one dimension. For this purpose, many criteria should be deemed in the selection process.  In this study decision making methods such as AHP, TOPSIS and VIKOR are employed to select the suitable cutting fluid. AHP is used to compute the objective weights for the  criteria.The three alternatives considered are Ahonol- 7, Blaser and YBI. A case study of cutting fluid selection for machining LM 25 Aluminium alloy which finds application in automobile industries is presented to explain the applicability and suitability of the anticipated method. Ranking of alternatives in the above methods suggests Ahonol – 7 as the best cutting fluid for CNC turning LM 25 aluminium alloy.


1959 ◽  
Vol 11 (11) ◽  
pp. 43-51
Author(s):  
C.J. Taylor ◽  
B.V. Harris

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Kanika Prasad ◽  
Shankar Chakraborty

Cutting fluid is applied for numerous reasons while machining a workpiece, like increasing tool life, minimizing workpiece thermal deformation, enhancing surface finish, flushing away chips from cutting surface, and so on. Hence, choosing a proper cutting fluid for a specific machining application becomes important for enhanced efficiency and effectiveness of a manufacturing process. Cutting fluid selection is a complex procedure as the decision depends on many complicated interactions, including work material’s machinability, rigorousness of operation, cutting tool material, metallurgical, chemical, and human compatibility, reliability and stability of fluid, and cost. In this paper, a decision making model is developed based on quality function deployment technique with a view to respond to the complex character of cutting fluid selection problem and facilitate judicious selection of cutting fluid from a comprehensive list of available alternatives. In the first example, HD-CUTSOL is recognized as the most suitable cutting fluid for drilling holes in titanium alloy with tungsten carbide tool and in the second example, for performing honing operation on stainless steel alloy with cubic boron nitride tool, CF5 emerges out as the best honing fluid. Implementation of this model would result in cost reduction through decreased manpower requirement, enhanced workforce efficiency, and efficient information exploitation.


Author(s):  
James E. Mogush ◽  
Dominique Carrega ◽  
Peter Spirtes ◽  
Mark S. Fox

The GREASE project is an investigation of the application of artificial intelligence to cutting fluid selection and blending for metal machining operations. The problem is to first diagnose the machining operations to determine what fluid characteristics are required, then to select a cutting fluid which satisfies the required characteristics. The problem is exacerbated by the need to select a single fluid to be used by multiple types of operations on a variety of materials. Diagnosis is relatively simple, but treatment specification is difficult due to the variety of operations to be handled.GREASE uses heuristic search in which the evaluation function is heuristically constructed. The construction of the evaluation function begins with the determination of the characteristics of an optimal fluid based on deep knowledge of the machining operations and materials. This is then altered heuristically according to problems diagnosed with the current fluid. Once the evaluation function is complete, it is used to select an existing fluid from the product line. GREASE has been tested extensively with results which equal that of the experts and has been field tested by the Chevron Corporation.


Sign in / Sign up

Export Citation Format

Share Document