Three-dimensional seismic tomography with tetrahedra element on isoparametric mapping

2012 ◽  
Vol 3 (1/2) ◽  
pp. 37 ◽  
Author(s):  
Yoshikazu Kobayashi
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Quan Sun ◽  
Shunping Pei ◽  
Zhongxiong Cui ◽  
Yongshun John Chen ◽  
Yanbing Liu ◽  
...  

AbstractDetailed crustal structure of large earthquake source regions is of great significance for understanding the earthquake generation mechanism. Numerous large earthquakes have occurred in the NE Tibetan Plateau, including the 1920 Haiyuan M8.5 and 1927 Gulang M8 earthquakes. In this paper, we obtained a high-resolution three-dimensional crustal velocity model around the source regions of these two large earthquakes using an improved double-difference seismic tomography method. High-velocity anomalies encompassing the seismogenic faults are observed to extend to depths of 15 km, suggesting the asperity (high-velocity area) plays an important role in the preparation process of large earthquakes. Asperities are strong in mechanical strength and could accumulate tectonic stress more easily in long frictional locking periods, large earthquakes are therefore prone to generate in these areas. If the close relationship between the aperity and high-velocity bodies is valid for most of the large earthquakes, it can be used to predict potential large earthquakes and estimate the seismogenic capability of faults in light of structure studies.


2021 ◽  
Author(s):  
Nalan Lom ◽  
Abdul Qayyum ◽  
Derya Gürer ◽  
Douwe G. van der Meer ◽  
Wim Spakman ◽  
...  

<p>Iran is a mosaic of continental blocks that are surrounded by Tethyan oceanic relics. Remnants of these oceanic rock assemblages are exposed around the Central Iranian Microcontinent (CIM), discretely along the Sanandaj-Sirjan Zone and in Jaz-Murian. The ophiolite belts surrounding the CIM are mainly assumed to represent narrow back-arc basins that opened in Cretaceous and closed before the Eocene. Although these ophiolites are exposed as small pieces on continental crust today, they represent oceans wide enough to form supra-subduction ophiolites and arc-related magmatic rocks which suggest that their palaeogeographic width was at least some hundreds of kilometers. Current models for the palaeogeographic dimension, opening and closure of these basins are highly schematic. They usually seem plausible in two-dimensional reconstructions, however a single three-dimensional model explaining whole Iran and its surrounding regions has not been fully accomplished.  This is mostly because while the geological record provides constraints on the origin and ages of the subducted ocean floor, it provides limited information about onset and cessation of the subduction and almost no constraints on the dimension of these oceans and the subduction zones that consumed them.</p><p>In this study, we follow a novel approach in estimating the dimension and evolution of these back-arc basin by using seismic tomography. Seismic tomography has revealed that we can image and trace subducted lithosphere relics. Imaged mantle structure is now being used to link sinking slabs with sutures and to define shape of a slab. Systematic comparison of regions where the timing of subduction is reasonably well constrained by geological data showed that slabs sink gradually through the mantle at rates more or less the same. This perspective enabled us to study slab shape as a function of absolute trench motion. While mantle stationary trenches tend to create steep slabs or slab walls, the flat-lying segments are formed where the overlying trenches are mobile relative to the mantle, normal facing during roll-back, overturned during slab advance.  Under the assumption of vertical sinking after break-off, it is also possible to locate the palaeo-trenches.  When combined with absolute plate motion reconstructions, tomographically determined volume and size of the subducted lithosphere can also be used to estimate the size/width of the prehistoric oceans. To this end, we build on and further develop concepts that relate absolute trench motion during subduction to modern slab geometry to evaluate the possible range of dimensions associated with opening and closure of the Iranian back-arc basins.</p>


1995 ◽  
Author(s):  
M. J. Jackson ◽  
M. J. Friedel ◽  
D. R. Tweeton ◽  
D. F. Scott ◽  
T. Williams

Author(s):  
John A. Adam

This chapter focuses on the underlying mathematics of seismic rays. Seismic waves caused by earthquakes and explosions are used in seismic tomography to create computer-generated, three-dimensional images of Earth's interior. If the Earth had a uniform composition and density, seismic rays would travel in straight lines. However, it is broadly layered, causing seismic rays to be refracted and reflected across boundaries. In order to calculate the speed along the wave's ray path, the time it takes for a seismic wave to arrive at a seismic station from an earthquake needs to be determined. Arrival times of different seismic waves allow scientists to define slower or faster regions deep in the Earth. The chapter first presents the relevant equations for seismic rays before discussing how rays are propagated in a spherical Earth. The Wiechert-Herglotz inverse problem is considered, along with the properties of X in a horizontally stratified Earth.


2014 ◽  
Vol 119 (5) ◽  
pp. 4377-4392 ◽  
Author(s):  
Guoqing Lin ◽  
Peter M. Shearer ◽  
Robin S. Matoza ◽  
Paul G. Okubo ◽  
Falk Amelung

Sign in / Sign up

Export Citation Format

Share Document