scholarly journals Structure-controlled asperities of the 1920 Haiyuan M8.5 and 1927 Gulang M8 earthquakes, NE Tibet, China, revealed by high-resolution seismic tomography

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Quan Sun ◽  
Shunping Pei ◽  
Zhongxiong Cui ◽  
Yongshun John Chen ◽  
Yanbing Liu ◽  
...  

AbstractDetailed crustal structure of large earthquake source regions is of great significance for understanding the earthquake generation mechanism. Numerous large earthquakes have occurred in the NE Tibetan Plateau, including the 1920 Haiyuan M8.5 and 1927 Gulang M8 earthquakes. In this paper, we obtained a high-resolution three-dimensional crustal velocity model around the source regions of these two large earthquakes using an improved double-difference seismic tomography method. High-velocity anomalies encompassing the seismogenic faults are observed to extend to depths of 15 km, suggesting the asperity (high-velocity area) plays an important role in the preparation process of large earthquakes. Asperities are strong in mechanical strength and could accumulate tectonic stress more easily in long frictional locking periods, large earthquakes are therefore prone to generate in these areas. If the close relationship between the aperity and high-velocity bodies is valid for most of the large earthquakes, it can be used to predict potential large earthquakes and estimate the seismogenic capability of faults in light of structure studies.

Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. B41-B57 ◽  
Author(s):  
Himanshu Barthwal ◽  
Mirko van der Baan

Microseismicity is recorded during an underground mine development by a network of seven boreholes. After an initial preprocessing, 488 events are identified with a minimum of 12 P-wave arrival-time picks per event. We have developed a three-step approach for P-wave passive seismic tomography: (1) a probabilistic grid search algorithm for locating the events, (2) joint inversion for a 1D velocity model and event locations using absolute arrival times, and (3) double-difference tomography using reliable differential arrival times obtained from waveform crosscorrelation. The originally diffusive microseismic-event cloud tightens after tomography between depths of 0.45 and 0.5 km toward the center of the tunnel network. The geometry of the event clusters suggests occurrence on a planar geologic fault. The best-fitting plane has a strike of 164.7° north and dip angle of 55.0° toward the west. The study region has known faults striking in the north-northwest–south-southeast direction with a dip angle of 60°, but the relocated event clusters do not fall along any mapped fault. Based on the cluster geometry and the waveform similarity, we hypothesize that the microseismic events occur due to slips along an unmapped fault facilitated by the mining activity. The 3D velocity model we obtained from double-difference tomography indicates lateral velocity contrasts between depths of 0.4 and 0.5 km. We interpret the lateral velocity contrasts in terms of the altered rock types due to ore deposition. The known geotechnical zones in the mine indicate a good correlation with the inverted velocities. Thus, we conclude that passive seismic tomography using microseismic data could provide information beyond the excavation damaged zones and can act as an effective tool to complement geotechnical evaluations.


Geophysics ◽  
2007 ◽  
Vol 72 (4) ◽  
pp. B93-B106 ◽  
Author(s):  
G-Akis Tselentis ◽  
Anna Serpetsidaki ◽  
Nikolaos Martakis ◽  
Efthimios Sokos ◽  
Paraskevas Paraskevopoulos ◽  
...  

A high-resolution passive seismic investigation was performed in a [Formula: see text] area around the Rio-Antirio Strait in central Greece using natural microearthquakes recorded during three months by a dense, temporary seismic network consisting of 70 three-component surface stations. This work was part of the investigation for a planned underwater rail tunnel, and it gives us the opportunity to investigate the potential of this methodology. First, 150 well-located earthquake events were selected to compute a minimum (1D) velocity model for the region. Next, the 1D model served as the initial model for nonlinear inversion for a 3D P- and S- velocity crustal structure by iteratively solving the coupled hypocenter-velocity problem using a least-squares method. The retrieved [Formula: see text] and [Formula: see text] images were used as an input to Kohonen self-organizing maps (SOMs) to identify, systematically and objectively, the prominent lithologies in the region. SOMs are unsupervised artificial neural networks that map the input space into clusters in a topological form whose organization is related to trends in the input data. This analysis revealed the existence of five major clusters, one of which may be related to the existence of an evaporite body not shown in the conventional seismic tomography velocity volumes. The survey results provide, for the first time, a 3D model of the subsurface in and around the Rio-Antirio Strait. It is the first time that passive seismic tomography is used together with SOM methodologies at this scale, thus revealing the method’s potential.


2020 ◽  
Author(s):  
Bhargav Boddupalli ◽  
Tim Minshull ◽  
Joanna Morgan ◽  
Gaye Bayrakci

<p>Imaging of hyperextended zone and exhumed continental mantle rocks can improve our understanding of the tectonics of the final stages of rifting. In the Deep Galicia margin, the upper and lower crust are coupled allowing the normal faults to cut through the brittle crust and penetrate to the mantle leading to serpentinization of the mantle. Localized extensional forces caused extreme thinning and elongation of crystalline continental crust causing the continental blocks to slip over a lithospheric-scale detachment fault called the S-reflector.  </p><p>A high-resolution velocity model obtained using seismic full waveform inversion gives us deeper insights into the rifting process. In this study, we present results from three dimensional acoustic full waveform inversion performed using wide-angle seismic data acquired in the deep water environments of the Deep Galicia margin using ocean bottom seismometers. We performed full waveform inversion in the time domain, starting with a velocity model obtained using travel-time tomography, of dimensions 78.5 km x 22.1 km and depth 12 km. The high-resolution modelling shows short-wavelength variations in the velocity, adding details to the travel-time model. We superimposed our final model, converted to two-way time, on pre-stack time-migrated three-dimensional reflection data from the same survey. Compared to the starting model, our model shows improved alignment of the velocity variations along the steeply dipping normal faults and a sharp velocity contrast across the S-reflector. We validated our result using checkerboard tests, by tracking changes in phases of the first arrivals during the inversion and by comparing the observed and the synthetic waveforms. We observe a clear evidence for preferential serpentinization (45 %) of the mantle with lower velocities in the mantle correlating with the fault intersections with the S-reflector.</p>


Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Author(s):  
Kenneth H. Downing ◽  
Hu Meisheng ◽  
Hans-Rudolf Went ◽  
Michael A. O'Keefe

With current advances in electron microscope design, high resolution electron microscopy has become routine, and point resolutions of better than 2Å have been obtained in images of many inorganic crystals. Although this resolution is sufficient to resolve interatomic spacings, interpretation generally requires comparison of experimental images with calculations. Since the images are two-dimensional representations of projections of the full three-dimensional structure, information is invariably lost in the overlapping images of atoms at various heights. The technique of electron crystallography, in which information from several views of a crystal is combined, has been developed to obtain three-dimensional information on proteins. The resolution in images of proteins is severely limited by effects of radiation damage. In principle, atomic-resolution, 3D reconstructions should be obtainable from specimens that are resistant to damage. The most serious problem would appear to be in obtaining high-resolution images from areas that are thin enough that dynamical scattering effects can be ignored.


Author(s):  
Hirano T. ◽  
M. Yamaguchi ◽  
M. Hayashi ◽  
Y. Sekiguchi ◽  
A. Tanaka

A plasma polymerization film replica method is a new high resolution replica technique devised by Tanaka et al. in 1978. It has been developed for investigation of the three dimensional ultrastructure in biological or nonbiological specimens with the transmission electron microscope. This method is based on direct observation of the single-stage replica film, which was obtained by directly coating on the specimen surface. A plasma polymerization film was deposited by gaseous hydrocarbon monomer in a glow discharge.The present study further developed the freeze fracture method by means of a plasma polymerization film produces a three dimensional replica of chemically untreated cells and provides a clear evidence of fine structure of the yeast plasma membrane, especially the dynamic aspect of the structure of invagination (Figure 1).


Sign in / Sign up

Export Citation Format

Share Document