Effect of masonry infill wall with opening on reinforced concrete frame due to seismic loading: parametric study

2021 ◽  
Vol 11 (1) ◽  
pp. 84
Author(s):  
Abu Sayed Mohammad Akid ◽  
Muhammad Harunur Rashid ◽  
Md. Habibur Rahman Sobuz
2018 ◽  
Vol 171 ◽  
pp. 476-487 ◽  
Author(s):  
Hadi Baghi ◽  
André Oliveira ◽  
Jónatas Valença ◽  
Eduardo Cavaco ◽  
Luís Neves ◽  
...  

2018 ◽  
Vol 1 (4) ◽  
pp. 845-856
Author(s):  
Mutia Intan Sari ◽  
Abdullah Abdullah ◽  
Mochammad Afifuddin

Abstract: Generally, brick masonry is used as infill wall material for houses and buildings. The Infill wall is installed once the structure is constructed, and assumed as the dead load for the structure. In fact, infill wall may contribute significant stiffness to the structure. As a consequent, the structure may develop such higher base shear forces due to the large stiffness of the structure. The purpose of this research is to evaluate the behavior of the reinforced concrete frame specimen with red brick infill wall and the specimen without using any infill wall. The size of the frame specimen is 2350 x 3300 mm, which consists of reinforced concrete bare frame specimen and reinforced concrete frame specimen with brick masonry infill wall. Cyclic loading tests were conducted on the specimens on the top beam of frame by in-plane direction. The displacement loading protocol are performed laterally and determined by the measured maximum of LVDT from the beam-column connection. Based on the experimental result, the increase capacity and the obtained energy dissipation of the infill wall frame specimen is up to 11.65 and 3.54 higher respectively, compared to the bare frame specimen. The decrease of the stiffness and the ductility level of the infill wall specimen is lesser in comparison with the bare frame specimen. The typical failure mechanism of the infill wall specimens is diagonal cracking. Abstrak: Material bahan bangunan pengisi dinding untuk pembangunan rumah tinggal dan gedung umumnya menggunakan bata merah. Dinding pengisi dipasang apabila struktur utama selesai dikerjakan dan dianggap sebagai beban mati. Namun pada kenyataannya struktur bangunan yang memiliki dinding mempunyai kekakuan struktur yang besar. Ditinjau dari aspek kegempaan, struktur bangunan dengan kekakuan yang besar maka semakin besar pula beban gempa yang bekerja. Tujuan dari penelitian ini menganalisis perilaku portal beton bertulang dengan dinding bata merah yang dibandingkan dengan portal beton bertulang tanpa dinding. Pengujian yang dilakukan adalah portal beton bertulang dengan ukuran 2350 × 3300 mm berjumlah 2 sampel yaitu: portal tanpa dinding dan portal berdinding bata merah dengan plasteran. Pengujian portal dilakukan dengan beban lateral siklik dengan arah pembebanan sejajar bidang balok (in plane) pada balok bagian atas portal. Mekanisme pembebanan dilakukan dengan kontrol beban yang ditentukan oleh perpindahan maksimum yang terukur dari LVDT dari join kolom-balok. Hasil penelitian ini menunjukkan terjadinya peningkatan kapasitas dan energi disipasi sebesar 11,65 kali dan 3,54 kali dari portal tanpa dinding. Penurunan kekakuan dan daktilitas yang terjadi lebih kecil dari portal tanpa dinding. Pola kehancuran yang terjadi pada portal berisi dinding bata merah yaitu jenis diagonal cracking


2016 ◽  
Vol 711 ◽  
pp. 982-988
Author(s):  
Alex Brodsky ◽  
David Z. Yankelevsky

Numerous studies have been conducted on the in plane behavior of masonry infill walls to lateral loading simulating earthquake action on buildings. The present study is focused on a problem that has almost not been studied regarding the vertical (opposed to lateral) in-plane action on these walls. This may be of concern when a supporting column of a multi-storey reinforced concrete frame with infill masonry walls undergoes a severe damage due to an extreme loading such as a strong earthquake, car impact or military or terror action in proximity to the column. The loss of the supporting column may cause a fully or partly progressive collapse to a bare reinforced concrete frame, without infill masonry walls. The presence of the infill masonry walls may restrain the process and prevent the development of a progressive collapse. The aim of the present study is to test the in-plane composite action of Reinforced Concrete (RC) frames with infill masonry walls under vertical loading through laboratory experiments and evaluate the contributions of infill masonry walls, in an attempt to examine the infill masonry wall added resistance to the bare frame under these circumstances. Preliminary results of laboratory tests that have been conducted on reinforced concrete infilled frames without a support at their end, under monotonic vertical loading along that column axis will be presented. The observed damages and failure modes under vertical loading are clearly different from the already known failure modes observed in the case of lateral loading.


Author(s):  
Ziad Azzi ◽  
Caesar Abi Shdid

The majority of new and existing building inventories in the Middle East consist of reinforced concrete skeletal structures with outer shells composed of unreinforced masonry infill walls. In the absence of any mandatory seismic design requirements, these buildings will sustain catastrophic damage when exposed to high seismic activity. Investigating the behavior of such infill walls when exposed to ground motion is therefore an important topic. Experimental tests using shake table out-of-plane ground motion of the 1940 El Centro earthquake displacement are conducted on 3:10 scaled specimens of a single story reinforced concrete frame with a masonry infill wall in between. The test specimens are constructed with the same materials and construction practices commonly used in the region. Displacements and strains are compared with a finite element model of the frame. Moreover, the observed overall behavior of the infill is compared to that of the computer model. The recorded strains in the mortar joints exceeded cracking limits, whereas the overall stability of the wall in out-of-plane bending was not compromised. Recommendations on the use of these structural elements are formulated.


2006 ◽  
Vol 324-325 ◽  
pp. 635-638
Author(s):  
Chang Sik Choi ◽  
Hye Yeon Lee

The purpose of this study is to understand the fundamental resistance mechanism and the shear strength of the frame with the reinforced concrete infill wall by comparing analytical with experimental results. For this, one-story and one-bay four specimens were manufactured with variables; Lightly Reinforced Concrete Frame (LRCF), monolith placing Shear Wall (SW), CIP Infill Wall (CIW-1) and CIP Infill Wall reinforced with diagonal rebar (CIW-2). The addition of the RC infill wall was significantly improved the strength and the stiffness. Compared with specimen LRCF, ultimate strength and initial stiffness of infills was improved 4 and 6 times, respectively. The case of specimen CIW-2, structural performance was improved remarkably by placing a diagonal rebar.


Sign in / Sign up

Export Citation Format

Share Document