Rehabilitation of Reinforce Concrete Frames with Reinforced Concrete Infills

2006 ◽  
Vol 324-325 ◽  
pp. 635-638
Author(s):  
Chang Sik Choi ◽  
Hye Yeon Lee

The purpose of this study is to understand the fundamental resistance mechanism and the shear strength of the frame with the reinforced concrete infill wall by comparing analytical with experimental results. For this, one-story and one-bay four specimens were manufactured with variables; Lightly Reinforced Concrete Frame (LRCF), monolith placing Shear Wall (SW), CIP Infill Wall (CIW-1) and CIP Infill Wall reinforced with diagonal rebar (CIW-2). The addition of the RC infill wall was significantly improved the strength and the stiffness. Compared with specimen LRCF, ultimate strength and initial stiffness of infills was improved 4 and 6 times, respectively. The case of specimen CIW-2, structural performance was improved remarkably by placing a diagonal rebar.

1983 ◽  
Vol 73 (5) ◽  
pp. 1435-1450
Author(s):  
Andrzej S. Nowak ◽  
Elizabeth L. M. Rose

Abstract This paper deals with the evaluation of seismic risk for commercial buildings in Memphis, Tennessee. The seismicity of the area is summarized, and commercial buildings are divided into categories with regard to parameters such as number of stories, year of construction, assessed value, total floor area, and structural type. The distributions of these parameters are presented in the figures. During the study, over 15 buildings were examined on site by a team of experts to evaluate their seismic resistances. The quality of the design, materials, and construction was found to be surprisingly good, particularly in those structures built since 1900. Seismic resistance is analytically evaluated for five buildings: a four-story reinforced concrete frame; a four-story steel structure with vertical trusses; a 13-story stell frame; and two multi-story reinforced concrete frames. The loadings from four sources are considered: EI Centro and Taft earthquakes in California (1940 and 1952, respectively) and the forces specified in the 1979 UBC and 1981 BOCA codes. Ratios of load to capacity are calculated. For each building considered, the expected percentage of damage is evaluated for the two earthquakes. The damage prediction is extended to all commercial buildings in Memphis.


2012 ◽  
Vol 157-158 ◽  
pp. 1173-1177
Author(s):  
Li Xiao ◽  
Wen Zhong Qu ◽  
Jian Gang Wang

Terrorist bombing attacks will endanger and may even destroy the target building structures, resulting in economic loss and casualties. Typical columns and floor slab systems are not designed to resist the complex blast loading. So, in recent years, the effects of blast on conventional public buildings are focused on. In this paper,a two-bay,one-story reinforced concrete frame structure which is used to model a portion of a typical reinforced concrete frame structural system is used to investigate the blast response. The experiments are conducted on two models, allowing a variation in explosives standoff and explosives charge. In each experiment,the blast pressure values are recorded and the degree of damage of the frames are studied. According to the two kinds of experiments, two numerical models are established. ALE method which considers the interaction of the explosive, the air, and the structure is applied.Structure response analyses are performed using the large deformation finite-element computer code, LS-DYNA. The numerical results are compared with the experiment results, and a good agreement is obtained. The calculating results also demonstrate that some experimental value is unreasonable.


2018 ◽  
Vol 1 (4) ◽  
pp. 845-856
Author(s):  
Mutia Intan Sari ◽  
Abdullah Abdullah ◽  
Mochammad Afifuddin

Abstract: Generally, brick masonry is used as infill wall material for houses and buildings. The Infill wall is installed once the structure is constructed, and assumed as the dead load for the structure. In fact, infill wall may contribute significant stiffness to the structure. As a consequent, the structure may develop such higher base shear forces due to the large stiffness of the structure. The purpose of this research is to evaluate the behavior of the reinforced concrete frame specimen with red brick infill wall and the specimen without using any infill wall. The size of the frame specimen is 2350 x 3300 mm, which consists of reinforced concrete bare frame specimen and reinforced concrete frame specimen with brick masonry infill wall. Cyclic loading tests were conducted on the specimens on the top beam of frame by in-plane direction. The displacement loading protocol are performed laterally and determined by the measured maximum of LVDT from the beam-column connection. Based on the experimental result, the increase capacity and the obtained energy dissipation of the infill wall frame specimen is up to 11.65 and 3.54 higher respectively, compared to the bare frame specimen. The decrease of the stiffness and the ductility level of the infill wall specimen is lesser in comparison with the bare frame specimen. The typical failure mechanism of the infill wall specimens is diagonal cracking. Abstrak: Material bahan bangunan pengisi dinding untuk pembangunan rumah tinggal dan gedung umumnya menggunakan bata merah. Dinding pengisi dipasang apabila struktur utama selesai dikerjakan dan dianggap sebagai beban mati. Namun pada kenyataannya struktur bangunan yang memiliki dinding mempunyai kekakuan struktur yang besar. Ditinjau dari aspek kegempaan, struktur bangunan dengan kekakuan yang besar maka semakin besar pula beban gempa yang bekerja. Tujuan dari penelitian ini menganalisis perilaku portal beton bertulang dengan dinding bata merah yang dibandingkan dengan portal beton bertulang tanpa dinding. Pengujian yang dilakukan adalah portal beton bertulang dengan ukuran 2350 × 3300 mm berjumlah 2 sampel yaitu: portal tanpa dinding dan portal berdinding bata merah dengan plasteran. Pengujian portal dilakukan dengan beban lateral siklik dengan arah pembebanan sejajar bidang balok (in plane) pada balok bagian atas portal. Mekanisme pembebanan dilakukan dengan kontrol beban yang ditentukan oleh perpindahan maksimum yang terukur dari LVDT dari join kolom-balok. Hasil penelitian ini menunjukkan terjadinya peningkatan kapasitas dan energi disipasi sebesar 11,65 kali dan 3,54 kali dari portal tanpa dinding. Penurunan kekakuan dan daktilitas yang terjadi lebih kecil dari portal tanpa dinding. Pola kehancuran yang terjadi pada portal berisi dinding bata merah yaitu jenis diagonal cracking


2017 ◽  
Author(s):  
◽  
Joseph Ernest Kirby

Under a disproportionate collapse, the sudden loss of a support causes a dynamic response that can amplify the internal forces in the surrounding members and lead to significant global damage. This study considered a two-dimensional, quarter scale, two bay, two story reinforced concrete frame with discontinuous reinforcement. In order to simulate an interior bay condition, the frame was axially restrained at the adjacent-bay beam locations. Dead weights were applied to simulate the dead and live loads expected to be present during a collapse event. To initiate the test, and to simulate the sudden loss of a load-bearing column, a kickstand was implemented. The results presented herein are from four dynamic tests under various levels of applied load. The fourth drop, with a load corresponding to 42 percent of the 1.2*DL + 0.5*LL typically specified in disproportionate collapse guidelines, resulted in a catenary action. The results show that there is a very fine tipping point at which the structure is pushed past the compressive arch and flexural range of resistance into the catenary action range (hereafter referred to as the snap-through effect). Furthermore, the results show that due to this snap-through effect, the dynamic increase factor can be as great as 2.4, significantly higher than the value specified by the aforementioned guidelines.


2019 ◽  
Vol 22 (15) ◽  
pp. 3176-3189
Author(s):  
Zhenbao Li ◽  
Yanwei Cui ◽  
Kun Song ◽  
Hua Ma ◽  
Zhenyun Tang

The anti-seismic capability of beam-column joints in reinforced concrete frame structures undergoing bidirectional loading may be lower than the designed capability for unidirectional earthquake action. To date, detailed calculation methods for the shear capability and shearing performance for joints in reinforced concrete frames subjected to bidirectional loading have not been reported. In this work, the shear mechanism of the beam-column joint in a reinforced concrete frame under bidirectional loading is analyzed. The study shows that when a synthetic shear force is imposed on the joint, the oblique compression zone comes into being at the corner of the joint, and the oblique compression strut is formed in the core area of the joint, which is different from the shear mechanism of the joint under unidirectional loading. A shear capacity calculation model is established based on the strut-and-tie model. Through the testing of reinforced concrete frame joints under bidirectional monotonous loading, the combined shear and deformation in the joint are obtained, the mechanical properties in each principal plane and in the combined shear action plane are analyzed, the shearing performance of the joints in a reinforced concrete frame under bidirectional loading is defined, and the shear contributions of hoop and column reinforcement are verified. The predicted values of the shear capability in this work are in good agreement with the reported experimental results.


Author(s):  
Florin Ţepeş Onea ◽  
Marian Dragomir

Abstract The theme of the paper is to design the capacity of a P + 6E construction with reinforced concrete frame structure and determination of the basic force-displacement on the top. Drawing the cutting force - the displacement at the top requires a non-linear bias of the pushover type. The non-linear static calculation is used in the displacement-based design methodology, in which lateral displacements are considered the main parameter for characterizing the seismic response of the structures.


2017 ◽  
Vol 33 (1) ◽  
pp. 25-44 ◽  
Author(s):  
Henry V. Burton ◽  
Mayank Sharma

A performance-based methodology is presented to quantify the reduction in collapse safety of main shock–damaged reinforced concrete frame buildings with infills. After assessing their collapse safety in the intact state, the residual collapse capacity following main shock damage is evaluated by conducting incremental dynamic analysis to collapse using main shock–aftershock ground motion sequences. The median collapse capacity and conditional probability of collapse for the main shock–damaged building, normalized by that of the intact case are the metrics used to measure the reduction in collapse safety. Taller buildings with built-in soft and weak first stories have the highest reduction in collapse safety as a result of main shock damage. Among the engineering demand parameters recorded during the main shock analyses, story drift demands (peak transient and residual) and infill strut axial deformations have the highest correlation with the decline in collapse performance. The results of the main shock–aftershock incremental dynamic analysis to collapse are used to develop fragility functions for the limit state defined by the building being structurally unsafe to occupy.


2016 ◽  
Vol 20 (5) ◽  
pp. 822-839
Author(s):  
Kinzang Thinley ◽  
Hong Hao

Bhutan locates in a high seismicity region but has no seismic design code of its own. Recent devastating earthquake in Nepal, which is located in the same region as Bhutan and with similar construction types, raises the concern on the seismic safety of building structures in Bhutan. This study is aimed at assessing the performance of masonry-infilled and soft storey reinforced concrete frame buildings in Bhutan under the 475- and 2475-year return period ground motions predicted from the Probabilistic Seismic Hazard Analysis. A nonlinear strut model is used to model the infill wall, and the influence of openings and soil–structure interaction are considered in the analyses. The result suggests that the masonry-infilled reinforced concrete frame buildings in Bhutan could suffer repairable and irreparable damages under the 475-year return period ground motions and severe damages and even collapse under the 2475-year return period ground motion. The buildings with the soft storey are found to be more vulnerable than the normal masonry-infilled reinforced concrete buildings. The design recommendation of Indian Seismic Code improves the performance of soft storey buildings but cannot fully negate the soft storey effect. This study is the first such effort in assessing the performance of general building stocks in the high seismicity Bhutan. The results can guide the seismic strengthening options and can be used for further loss predictions for seismic preparedness of the country.


Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 310
Author(s):  
Fei Wang ◽  
Kaozhong Zhao ◽  
Jianwei Zhang ◽  
Kai Yan

To study the influence of masonry infill walls on the hysteretic performance of reinforced concrete frames, a cyclic experiment was conducted for three two-story and two-span reinforced concrete frame structures, including one reinforced concrete frame without infill walls and two frames with infill walls. Whether the infill walls were constructed in the frames and the type of infilled material were the main parameters of the test. The major results reveal that: the infill walls clearly changed the mechanical mechanism of the frame structure at the early stage of loading, magnified the stiffness and horizontal bearing capacity of the frame structure, and enhanced the energy dissipation capacity of the frame structure, but reduced the deformation performance of the frame structure. In the later stage of loading, the infill walls would no longer work as one with the frame gradually with the failure of the infill walls, and the above performance of the structure would approach the empty frame structure. Moreover, the initial stiffness, energy dissipation capacity, and horizontal bearing capacity of the frame with infill walls of clay hollow bricks were the highest among the three specimens. But due to the strong diagonal bracing effect, the damage to the top of the columns and beam-column joints was serious, the yield displacement was reduced significantly, and the shear failure of the top of the columns and the joints occurred prematurely, which showed poor performance of deformation and ductility. However, the frame with infill walls of relatively soft aerated lightweight concrete blocks showed better performance of deformation and ductility.


Sign in / Sign up

Export Citation Format

Share Document