scholarly journals PERILAKU LATERAL SIKLIK PORTAL BETON BERTULANG BERISI DINDING BATA MERAH

2018 ◽  
Vol 1 (4) ◽  
pp. 845-856
Author(s):  
Mutia Intan Sari ◽  
Abdullah Abdullah ◽  
Mochammad Afifuddin

Abstract: Generally, brick masonry is used as infill wall material for houses and buildings. The Infill wall is installed once the structure is constructed, and assumed as the dead load for the structure. In fact, infill wall may contribute significant stiffness to the structure. As a consequent, the structure may develop such higher base shear forces due to the large stiffness of the structure. The purpose of this research is to evaluate the behavior of the reinforced concrete frame specimen with red brick infill wall and the specimen without using any infill wall. The size of the frame specimen is 2350 x 3300 mm, which consists of reinforced concrete bare frame specimen and reinforced concrete frame specimen with brick masonry infill wall. Cyclic loading tests were conducted on the specimens on the top beam of frame by in-plane direction. The displacement loading protocol are performed laterally and determined by the measured maximum of LVDT from the beam-column connection. Based on the experimental result, the increase capacity and the obtained energy dissipation of the infill wall frame specimen is up to 11.65 and 3.54 higher respectively, compared to the bare frame specimen. The decrease of the stiffness and the ductility level of the infill wall specimen is lesser in comparison with the bare frame specimen. The typical failure mechanism of the infill wall specimens is diagonal cracking. Abstrak: Material bahan bangunan pengisi dinding untuk pembangunan rumah tinggal dan gedung umumnya menggunakan bata merah. Dinding pengisi dipasang apabila struktur utama selesai dikerjakan dan dianggap sebagai beban mati. Namun pada kenyataannya struktur bangunan yang memiliki dinding mempunyai kekakuan struktur yang besar. Ditinjau dari aspek kegempaan, struktur bangunan dengan kekakuan yang besar maka semakin besar pula beban gempa yang bekerja. Tujuan dari penelitian ini menganalisis perilaku portal beton bertulang dengan dinding bata merah yang dibandingkan dengan portal beton bertulang tanpa dinding. Pengujian yang dilakukan adalah portal beton bertulang dengan ukuran 2350 × 3300 mm berjumlah 2 sampel yaitu: portal tanpa dinding dan portal berdinding bata merah dengan plasteran. Pengujian portal dilakukan dengan beban lateral siklik dengan arah pembebanan sejajar bidang balok (in plane) pada balok bagian atas portal. Mekanisme pembebanan dilakukan dengan kontrol beban yang ditentukan oleh perpindahan maksimum yang terukur dari LVDT dari join kolom-balok. Hasil penelitian ini menunjukkan terjadinya peningkatan kapasitas dan energi disipasi sebesar 11,65 kali dan 3,54 kali dari portal tanpa dinding. Penurunan kekakuan dan daktilitas yang terjadi lebih kecil dari portal tanpa dinding. Pola kehancuran yang terjadi pada portal berisi dinding bata merah yaitu jenis diagonal cracking

This paper presents an explicit behaviour of Reinforced Concrete frame by considering the masonry infill wall material fully and partially in the structure. A two storey 2D frames of six different cases and 10 storey 3D building of four different cases with fully and partially assignment of infill masonry walls. Analysis was performed in E-TABS software for all the 10 cases by generating synthetic earthquake matched time history with response spectrum. The study was carried out the effect of infill wall on the behaviour of column. The results were discussed and maximum storey displacements were taken in to consideration to study the behavior of the structure. The Storey displacements for the ten cases were taken in to account and revealed that higher displacements were observed in the cases with the partial infill and effect on column due to the partial or absence of infill wall adjacent to the column.


2018 ◽  
Vol 171 ◽  
pp. 476-487 ◽  
Author(s):  
Hadi Baghi ◽  
André Oliveira ◽  
Jónatas Valença ◽  
Eduardo Cavaco ◽  
Luís Neves ◽  
...  

1989 ◽  
Vol 16 (5) ◽  
pp. 627-649 ◽  
Author(s):  
Patrick Paultre ◽  
Daniel Castele ◽  
Suzanne Rattray ◽  
Denis Mitchell

The 1984 CSA standard for the design of concrete structures for buildings provided new seismic design and detailing requirements for concrete structures. Full-scale, reversed cyclic loading tests of reinforced concrete beam–slab–column subassemblages were carried out to investigate the seismic performance of frame structures designed with the latest Canadian code. The test results indicate the importance of including the influence of slab reinforcement in computing the beam capacity as well as the need to carefully design the joint regions for shear. The test results indicate the excellent performance of frame components designed with K = 0.7 (R = 4.0) and the poor performance of those designed and detailed with K = 2.0 (R = 1.5). The performance of subassemblages designed with K = 1.3 (R = 2.0) depends on the column to beam strength ratio and on the shear strength of the joints. Models to predict the flexural response as well as the shear response of key elements are described and the role of the spandrel beam in limiting the effective slab width is explained. Key words: seismic design, reinforced concrete, detailing, structures, codes.


2006 ◽  
Vol 324-325 ◽  
pp. 635-638
Author(s):  
Chang Sik Choi ◽  
Hye Yeon Lee

The purpose of this study is to understand the fundamental resistance mechanism and the shear strength of the frame with the reinforced concrete infill wall by comparing analytical with experimental results. For this, one-story and one-bay four specimens were manufactured with variables; Lightly Reinforced Concrete Frame (LRCF), monolith placing Shear Wall (SW), CIP Infill Wall (CIW-1) and CIP Infill Wall reinforced with diagonal rebar (CIW-2). The addition of the RC infill wall was significantly improved the strength and the stiffness. Compared with specimen LRCF, ultimate strength and initial stiffness of infills was improved 4 and 6 times, respectively. The case of specimen CIW-2, structural performance was improved remarkably by placing a diagonal rebar.


Author(s):  
D. G. Elms ◽  
D. Silvester

The appropriateness of the overall base shear levels prescribed by
 the New Zealand Loadings Code NZS4203:1976 is investigated for reinforced concrete frame buildings. Six-storey structures were designed to different base shear levels and total costs were computed: total cost takes account of capital cost, averaged direct economic loss due to earthquakes, and indirect earthquake losses. Damage levels were obtained from computer time-history analyses. It is shown that the code base shear levels are
 of the right order of magnitude for reinforced concrete frame buildings, but that the total cost of such buildings is insensitive to design
base shear level. The increase in capital cost of a concrete frame building due to earthquake design requirements is of the order of 4%.


2016 ◽  
Vol 20 (5) ◽  
pp. 822-839
Author(s):  
Kinzang Thinley ◽  
Hong Hao

Bhutan locates in a high seismicity region but has no seismic design code of its own. Recent devastating earthquake in Nepal, which is located in the same region as Bhutan and with similar construction types, raises the concern on the seismic safety of building structures in Bhutan. This study is aimed at assessing the performance of masonry-infilled and soft storey reinforced concrete frame buildings in Bhutan under the 475- and 2475-year return period ground motions predicted from the Probabilistic Seismic Hazard Analysis. A nonlinear strut model is used to model the infill wall, and the influence of openings and soil–structure interaction are considered in the analyses. The result suggests that the masonry-infilled reinforced concrete frame buildings in Bhutan could suffer repairable and irreparable damages under the 475-year return period ground motions and severe damages and even collapse under the 2475-year return period ground motion. The buildings with the soft storey are found to be more vulnerable than the normal masonry-infilled reinforced concrete buildings. The design recommendation of Indian Seismic Code improves the performance of soft storey buildings but cannot fully negate the soft storey effect. This study is the first such effort in assessing the performance of general building stocks in the high seismicity Bhutan. The results can guide the seismic strengthening options and can be used for further loss predictions for seismic preparedness of the country.


Sign in / Sign up

Export Citation Format

Share Document