scholarly journals Sensitive and Rapid Detection of Centromeric Alphoid DNA in Human Metaphase Chromosomes by PNA Fluorescence In Situ Hybridization and Its Application to Biological Radiation Dosimetry

CYTOLOGIA ◽  
2012 ◽  
Vol 77 (2) ◽  
pp. 261-267 ◽  
Author(s):  
Yumiko Suto ◽  
Momoki Hirai ◽  
Miho Akiyama ◽  
Toshikazu Suzuki ◽  
Nobuyuki Sugiura
2017 ◽  
Vol 152 (3) ◽  
pp. 158-165 ◽  
Author(s):  
Gui-xiang Wang ◽  
Qun-yan He ◽  
Jiri Macas ◽  
Petr Novák ◽  
Pavel Neumann ◽  
...  

Whole-genome shotgun reads were analyzed to determine the repeat sequence composition in the genome of black mustard, Brassica nigra (L.) Koch. The analysis showed that satellite DNA sequences are very abundant in the black mustard genome. The distribution pattern of 7 new tandem repeats (BnSAT13, BnSAT28, BnSAT68, BnSAT76, BnSAT114, BnSAT180, and BnSAT200) on black mustard chromosomes was visualized using fluorescence in situ hybridization (FISH). The FISH signals of BnSAT13 and BnSAT76 provided useful cytogenetic markers; their position and fluorescence intensity allowed for unambiguous identification of all 8 somatic metaphase chromosomes. A karyotype showing the location and fluorescence intensity of these tandem repeat sequences together with the position of rDNAs and centromeric retrotransposons of Brassica (CRB) was constructed. The establishment of the FISH-based karyotype in B. nigra provides valuable information that can be used in detailed analyses of B. nigra accessions and derived allopolyploid Brassica species containing the B genome.


1997 ◽  
Vol 3 (S2) ◽  
pp. 203-204
Author(s):  
Mariette van de Corput ◽  
Rob van Gijlswijk ◽  
Mark Bobrow ◽  
Tom Erickson ◽  
Roel Dirks ◽  
...  

In recent years, Tyramide Signal Amplification (TSA) has gained acclaim as a very sensitive detection method for immunocytochemsitry and fluorescence in situ hybridization (FISH). To maximally exploit the great signal generation capacity of TSA in mRNA-FISH, minimizing signals emanating from non-specifically bound nucleic acid probe becomes of prime importance, because a specificity check of the signals observed in the cytoplasm is virtually impossible. We reasoned that utilization of synthetic oligonucleotides (ONTs) in stead of commonly used cDNAs or cRNAs would diminish non-specific probe binding and that direct Horse Radish Peroxidase (HRP) labelling of ONTs and TSA would enable their in situ detection.This approach was first tested in metaphase DNA-FISH using chromosome-specific repeats as targets. Using bifunctional crosslinking chemistry and HPLC, 5’-hexylamino oligonucleotides for chromosome specific simple satellite and alphoid sequences were conjugated to HRP and purified. Following 15 - 20 min of situ hybridization of a single HRP-ONT probe to metaphase chromosomes and a direct flurochrome-tyramide detection step, such repeat targets could be visualized with high specificity and excellent signal-to noise ratio.


Blood ◽  
1995 ◽  
Vol 85 (8) ◽  
pp. 2132-2138 ◽  
Author(s):  
ML Veronese ◽  
M Ohta ◽  
J Finan ◽  
PC Nowell ◽  
CM Croce

Translocations involving chromosome 8 at band q24 and one of the Ig loci on chromosomes 14q32, 22q11, and 2p11 are the hallmark of Burkitt's lymphoma (BL). It has been previously observed that the exact localization of the breakpoints at chromosome 8q24 can vary significantly from patient to patient, scattering over a distance of more than 300 kb upstream of c-myc and about 300 kb downstream of c-myc. To generate probes for fluorescence in situ hybridization (FISH) that detect most c-myc translocations, we screened a yeast artificial chromosome (YAC) library from normal human lymphocytes by colony hybridization, using three markers surrounding the c-myc gene as probes. We obtained 10 YAC clones ranging in size between 500 and 200 kb. Two nonchimeric clones were used for FISH on several BL cell lines and patient samples with different breakpoints at 8q24. Our results show that the YAC clones detected translocations scattered along approximately 200 kb in both metaphase chromosomes and interphase nuclei. The sensitivity, rapidity, and feasibility in nondividing cells render FISH an important diagnostic tool. Furthermore, the use of large DNA fragments such as YACs greatly simplifies the detection of translocations with widely scattered breakpoints such as these seen in BL.


2017 ◽  
Vol 56 (8) ◽  
pp. 632-638
Author(s):  
Nadine Sandhöfer ◽  
Klaus H. Metzeler ◽  
Purvi M. Kakadia ◽  
Zlatana Pasalic ◽  
Wolfgang Hiddemann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document