tandem repeat sequences
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 12)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Terence Gall-Duncan ◽  
Nozomu Sato ◽  
Ryan K.C. Yuen ◽  
Christopher E. Pearson

Expansions of gene-specific DNA tandem repeats (TRs), first described in 1991 as a disease-causing mutation in humans, are now known to cause >60 phenotypes, not just disease, and not only in humans. TRs are a common form of genetic variation with biological consequences, observed, so far, in humans, dogs, plants, oysters, and yeast. Repeat diseases show atypical clinical features, genetic anticipation, and multiple and partially penetrant phenotypes among family members. Discovery of disease-causing repeat expansion loci accelerated through technological advances in DNA sequencing and computational analyses. Between 2019 and 2021, 17 new disease-causing TR expansions were reported, totaling 63 TR loci (>69 diseases), with a likelihood of more discoveries, and in more organisms. Recent and historical lessons reveal that properly assessed clinical presentations, coupled with genetic and biological awareness, can guide discovery of disease-causing unstable TRs. We highlight critical but underrecognized aspects of TR mutations. Repeat motifs may not be present in current reference genomes but will be in forthcoming gapless long-read references. Repeat motif size can be a single nucleotide to kilobases/unit. At a given locus, repeat motif sequence purity can vary with consequence. Pathogenic repeats can be “insertions” within nonpathogenic TRs. Expansions, contractions, and somatic length variations of TRs can have clinical/biological consequences. TR instabilities occur in humans and other organisms. TRs can be epigenetically modified and/or chromosomal fragile sites. We discuss the expanding field of disease-associated TR instabilities, highlighting prospects, clinical and genetic clues, tools, and challenges for further discoveries of disease-causing TR instabilities and understanding their biological and pathological impacts—a vista that is about to expand.


2021 ◽  
Vol 12 ◽  
Author(s):  
María Laura González ◽  
Jorge Oscar Chiapella ◽  
Juan Domingo Urdampilleta

Diverse families of satellite DNA (satDNA) were detected in heterochromatin regions of Deschampsia. This kind of repetitive DNA consists of tandem repeat sequences forming big arrays in genomes, and can contribute to lineages differentiation. The differentiation between types of satDNA is related to their sequence identity, the size and number of monomers forming the array, and their chromosomal location. In this work, four families of satDNA (D2, D3, D12, D13), previously isolated by genomic analysis, were studied on chromosomal preparations of 12 species of Deschampsia (D. airiformis, D. antarctica, D. cespitosa, D. cordillerarum, D. elongata, D. kingii, D. laxa, D. mendocina, D. parvula, D. patula, D. venustula, and Deschampsia sp) and one of Deyeuxia (D. eminens). Despite the number of satDNA loci showing interspecific variation, the general distribution pattern of each satDNA family is maintained. The four satDNA families are AT-rich and associated with DAPI + heterochromatin regions. D2, D3, and D12 have mainly subterminal distribution, while D13 is distributed in intercalary regions. Such conservation of satDNA patterns suggests a not random distribution in genomes, where the variation between species is mainly associated with the array size and the loci number. The presence of satDNA in all species studied suggests a low genetic differentiation of sequences. On the other hand, the variation of the distribution pattern of satDNA has no clear association with phylogeny. This may be related to high differential amplification and contraction of sequences between lineages, as explained by the library model.


2021 ◽  
Vol 7 ◽  
Author(s):  
Zsuzsanna Bereczky ◽  
Réka Gindele ◽  
Szilvia Fiatal ◽  
Marianna Speker ◽  
Tünde Miklós ◽  
...  

Background: Antithrombin (AT) is one of the most important regulator of hemostasis. AT Budapest 3 (ATBp3) is a prevalent type II heparin-binding site (IIHBS) deficiency due to founder effect. Thrombosis is a complex disease including arterial (ATE) and venous thrombotic events (VTE) and the Roma population, the largest ethnic minority in Europe has increased susceptibility to these diseases partly due to their unfavorable genetic load. We aimed to calculate the age and origin of ATBp3 and to explore whether the frequency of it is higher in the Roma population as compared with the general population from the corresponding geographical area. We investigated the association of ATBp3 with thrombotic events in well-defined patients' populations in order to refine the recommendation when testing for ATBp3 is useful.Methods and Results: Prevalence of ATBp3, investigated in large samples (n = 1,000 and 1,185 for general Hungarian and Roma populations, respectively) was considerably high, almost 3%, among Roma and the founder effect was confirmed in their samples, while it was absent in the Hungarian general population. Age of ATBp3—as calculated by analysis of 8 short tandem repeat sequences surrounding SERPINC1—was dated back to XVII Century, when Roma migration in Central and Eastern Europe occurred. In our IIHBS cohort (n = 230), VTE was registered in almost all ATBp3 homozygotes (93%) and in 44% of heterozygotes. ATE occurred with lower frequency in ATBp3 (around 6%); it was rather associated with AT Basel (44%). All patients with ATE were young at the time of diagnosis. Upon investigating consecutive young (<40 years) patients with ATE (n = 92) and VTE (n = 110), the presence of ATBp3 was remarkable.Conclusions: ATBp3, a 400-year-old founder mutation is prevalent in Roma population and its Roma origin can reasonably be assumed. By the demonstration of the presence of ATBp3 in ATE patients, we draw the attention to consider type IIHBS AT deficiency in the background of not only VTE but also ATE, especially in selected populations as young patients without advanced atherosclerosis. We recommend including the investigation of ATBp3 as part of thrombosis risk assessment and stratification in Roma individuals.


Author(s):  
Ana M de la Fuente ◽  
Noelia Caparrós ◽  
José M Mora-Rodríguez ◽  
María Molina ◽  
Gaël Aleix-Mata ◽  
...  

Abstract Specific identification of oestrid larvae is usually problematic not only when using morphobiometric features, but also when applying molecular criteria, since very few molecular markers have been described for this group of flies. New molecular markers for oestrid are needed for more reliable species identification, diagnostic purposes, and epidemiological surveys; moreover, they can help in phylogenetic reconstruction. Here, we report the characterization of COI, 28S rDNA, ITS1, and ITS2 in Cephenemyia stimulator from roe deer and in Cephenemyia auribarbis and Pharyngomyia picta from red deer. The COI and 28S rDNA are very uniform in length, while the ITSs sequences are highly variable at both intraspecific and interspecific levels. The described ITSs sequences were longer than those described for other dipteran species by the presence of simple repeats and tandem repeat sequences. In C. auribarbis both ITS1 and ITS2 appeared as two variants, one short and the other long. In general, the analyzed markers present low intraspecific genetic variation and high interspecific variation. ITSs showed the greatest amount of intraspecific and interspecific variation. Phylogenetic analysis demonstrated that the characterized sequences differentiate the species and genera of Oestridae.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Radarane Santos Sena ◽  
Pedro Heringer ◽  
Mirela Pelizaro Valeri ◽  
Valéria Socorro Pereira ◽  
Gustavo C. S. Kuhn ◽  
...  

Abstract Choloepus, the only extant genus of the Megalonychidae family, is composed of two living species of two-toed sloths: Choloepus didactylus and C. hoffmanni. In this work, we identified and characterized the main satellite DNAs (satDNAs) in the sequenced genomes of these two species. SATCHO1, the most abundant satDNA in both species, is composed of 117 bp tandem repeat sequences. The second most abundant satDNA, SATCHO2, is composed of ~ 2292 bp tandem repeats. Fluorescence in situ hybridization in C. hoffmanni revealed that both satDNAs are located in the centromeric regions of all chromosomes, except the X. In fact, these satDNAs present some centromeric characteristics in their sequences, such as dyad symmetries predicted to form secondary structures. PCR experiments indicated the presence of SATCHO1 sequences in two other Xenarthra species: the tree-toed sloth Bradypus variegatus and the anteater Myrmecophaga tridactyla. Nevertheless, SATCHO1 is present as large tandem arrays only in Choloepus species, thus likely representing a satDNA exclusively in this genus. Our results reveal interesting features of the satDNA landscape in Choloepus species with the potential to aid future phylogenetic studies in Xenarthra and mammalian genomes in general.


Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1237
Author(s):  
Hyun-Joo Kim ◽  
Ki-Hyun Cho ◽  
Ji-Hyoung Ryu ◽  
Min-Kyung Jang ◽  
Ha-Gyeong Chae ◽  
...  

On 17 September 2019, the first outbreak of African swine fever in a pig farm was confirmed in South Korea. By 9 October, 14 outbreaks of ASF in domestic pigs had been diagnosed in 4 cities/counties. We isolated viruses from all infected farms and performed genetic characterization. The phylogenetic analysis showed that all of fourteen ASFV isolates in South Korea belong to genotype II and serogroup 8. Additionally, all isolates had an intergenic region (IGR) II variant with additional tandem repeat sequences (TRSs) between the I73R and I329L genes and showed characteristics of central variable region (CVR) 1 of the B602L gene and IGR 1 of MGF 505 9R/10R genes. These are identical to the genetic characteristics of some European isolates and Chinese isolates.


2020 ◽  
Author(s):  
Tsung-Yu Lu ◽  
Mark Chaisson ◽  

AbstractVariable number tandem repeat sequences (VNTR) are composed of consecutive repeats of short segments of DNA with hypervariable repeat count and composition. They include protein coding sequences and associations with clinical disorders. It has been difficult to incorporate VNTR analysis in disease studies that use short-read sequencing because the traditional approach of mapping to the human reference is less effective for repetitive and divergent sequences. We solve VNTR mapping for short reads with a repeat-pangenome graph (RPGG), a data structure that encodes both the population diversity and repeat structure of VNTR loci from multiple haplotype-resolved assemblies. We developed software to build a RPGG, and use the RPGG to estimate VNTR composition with short reads. We used this to discover VNTRs with length stratified by continental population, and novel expression quantitative trait loci, indicating that RPGG analysis of VNTRs will be critical for future studies of diversity and disease.


2020 ◽  
Vol 72 (5) ◽  
pp. 325-332
Author(s):  
Jibin Zhang ◽  
Ronald M. Goto ◽  
Marcia M. Miller

2019 ◽  
Vol 9 (2) ◽  
pp. 476-486 ◽  
Author(s):  
Shih‐Ching Chang ◽  
Yuan‐Tzu Lan ◽  
Pei‐Ching Lin ◽  
Shung‐Haur Yang ◽  
Chien‐Hsing Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document