Time Line: Resistance, Mortality, and the Power of Memory, 1530–1536

2021 ◽  
pp. 196-198
Keyword(s):  
Author(s):  
Marc Ouellet ◽  
Julio Santiago ◽  
Ziv Israeli ◽  
Shai Gabay

Spanish and English speakers tend to conceptualize time as running from left to right along a mental line. Previous research suggests that this representational strategy arises from the participants’ exposure to a left-to-right writing system. However, direct evidence supporting this assertion suffers from several limitations and relies only on the visual modality. This study subjected to a direct test the reading hypothesis using an auditory task. Participants from two groups (Spanish and Hebrew) differing in the directionality of their orthographic system had to discriminate temporal reference (past or future) of verbs and adverbs (referring to either past or future) auditorily presented to either the left or right ear by pressing a left or a right key. Spanish participants were faster responding to past words with the left hand and to future words with the right hand, whereas Hebrew participants showed the opposite pattern. Our results demonstrate that the left-right mapping of time is not restricted to the visual modality and that the direction of reading accounts for the preferred directionality of the mental time line. These results are discussed in the context of a possible mechanism underlying the effects of reading direction on highly abstract conceptual representations.


2012 ◽  
Author(s):  
Mallory A. Brown ◽  
Kenya Talton ◽  
Laura Lee Mcintyre
Keyword(s):  

2014 ◽  
Vol 3 ◽  
pp. 183-195
Author(s):  
Elena Macevičiūtė

The article deals with the requirements and needs for long-term digital preservation in different areas of scholarly work. The concept of long-term digital preservation is introduced by comparing it to digitization and archiving concepts and defined with the emphasis on dynamic activity within a certain time line. The structure of digital preservation is presented with regard to the elements of the activity as understood in Activity Theory. The life-cycle of digitization processes forms the basis of the main processing of preserved data in preservation archival system.The author draws on the differences between humanities and social sciences on one hand and natural and technological science on the other. The empirical data characterizing the needs for digital preservation within different areas of scholarship are presented and show the difference in approaches to long-term digital preservation, as well as differences in selecting the items and implementing the projects of digital preservation. Institutions and organizations can also develop different understanding of preservation requirements for digital documents and other objects.The final part of the paper is devoted to some general problems pertaining to the longterm digital preservation with the emphasis of the responsibility for the whole process of safe-guarding the cultural and scholarly heritage for the re-use of the posterior generations. It is suggested that the longevity of the libraries in comparison with much shorter life-span of private companies strengthens the claim of memory institutions to playing the central role in the long-term digital preservation.


2010 ◽  
Vol 130 (11) ◽  
pp. 2039-2046
Author(s):  
Munetoshi Numada ◽  
Masaru Shimizu ◽  
Takuma Funahashi ◽  
Hiroyasu Koshimizu

2009 ◽  
Vol 29 (5) ◽  
pp. 1359-1361
Author(s):  
Tong ZHANG ◽  
Zhao LIU ◽  
Ning OUYANG

2021 ◽  
Vol 11 (1) ◽  
pp. 9
Author(s):  
Fernando Leonel Aguirre ◽  
Nicolás M. Gomez ◽  
Sebastián Matías Pazos ◽  
Félix Palumbo ◽  
Jordi Suñé ◽  
...  

In this paper, we extend the application of the Quasi-Static Memdiode model to the realistic SPICE simulation of memristor-based single (SLPs) and multilayer perceptrons (MLPs) intended for large dataset pattern recognition. By considering ex-situ training and the classification of the hand-written characters of the MNIST database, we evaluate the degradation of the inference accuracy due to the interconnection resistances for MLPs involving up to three hidden neural layers. Two approaches to reduce the impact of the line resistance are considered and implemented in our simulations, they are the inclusion of an iterative calibration algorithm and the partitioning of the synaptic layers into smaller blocks. The obtained results indicate that MLPs are more sensitive to the line resistance effect than SLPs and that partitioning is the most effective way to minimize the impact of high line resistance values.


Sign in / Sign up

Export Citation Format

Share Document