SIX. Optics and Matter: Newton, Boyle, and Scholastic Mixture Theory

2019 ◽  
pp. 114-135
Keyword(s):  
Computation ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 8
Author(s):  
Chendi Cao ◽  
Mitchell Neilsen

Dam embankment breaches caused by overtopping or internal erosion can impact both life and property downstream. It is important to accurately predict the amount of erosion, peak discharge, and the resulting downstream flow. This paper presents a new model based on the material point method to simulate soil and water interaction and predict failure rate parameters. The model assumes that the dam consists of a homogeneous embankment constructed with cohesive soil, and water inflow is defined by a hydrograph using other readily available reach routing software. The model uses continuum mixture theory to describe each phase where each species individually obeys the conservation of mass and momentum. A two-grid material point method is used to discretize the governing equations. The Drucker–Prager plastic flow model, combined with a Hencky strain-based hyperelasticity model, is used to compute soil stress. Water is modeled as a weakly compressible fluid. Analysis of the model demonstrates the efficacy of our approach for existing examples of overtopping dam breach, dam failures, and collisions. Simulation results from our model are compared with a physical-based breach model, WinDAM C. The new model can capture water and soil interaction at a finer granularity than WinDAM C. The new model gradually removes the granular material during the breach process. The impact of material properties on the dam breach process is also analyzed.


1991 ◽  
Vol 29 (5) ◽  
pp. 561-573 ◽  
Author(s):  
A.C. Hansen ◽  
R.L. Crane ◽  
M.H. Damson ◽  
R.P. Donovan ◽  
D.T. Horning ◽  
...  

Author(s):  
Milivoje M. Kostic ◽  
Casey J. Walleck

A steady-state, parallel-plate thermal conductivity (PPTC) apparatus has been developed and used for comparative measurements of complex POLY-nanofluids, in order to compare results with the corresponding measurements using the transient, hotwire thermal conductivity (HWTC) apparatus. The related measurements in the literature, mostly with HWTC method, have been inconsistent and with measured thermal conductivities far beyond prediction using the well-known mixture theory. The objective was to check out if existing and well-established HWTC method might have some unknown issues while measuring TC of complex nano-mixture suspensions, like electro-magnetic phenomena, undetectable hot-wire vibrations, and others. These initial and limited measurements have shown considerable difference between the two methods, where the TC enhancements measured with PPTC apparatus were about three times smaller than with HWTC apparatus, the former data being much closer to the mixture theory prediction. However, the influence of measurement method is not conclusive since it has been observed that the complex nano-mixture suspensions were very unstable during the lengthy steady-state measurements as compared to rather quick transient HWTC method. The nanofluid suspension instability might be the main reason for very inconsistent results in the literature. It is necessary to expend investigation with more stable nano-mixture suspensions.


Sign in / Sign up

Export Citation Format

Share Document