scholarly journals 3. Shape-controlled metal nanoparticles for electrocatalytic applications

2018 ◽  
pp. 103-156 ◽  
nano Online ◽  
2017 ◽  
Author(s):  
Alam Abedini ◽  
Ahmad Ashrif A. Bakar ◽  
Farhad Larki ◽  
P. Susthitha Menon ◽  
Md. Shabiul Islam ◽  
...  

2017 ◽  
Vol 1 (1) ◽  
pp. 34-39 ◽  
Author(s):  
M.A. Montiel ◽  
F.J. Vidal-Iglesias ◽  
V. Montiel ◽  
J. Solla-Gullón

2021 ◽  
Author(s):  
Rajmohan Rangasamy ◽  
Kannappan Lakshmi

Poly(propyleneimine) PPI dendrimer with active amino groups and specific voids is an excellent template for the encapsulation and stabilization of size and shape-controlled metal nanoparticles. Magnetite cored PPI dendrimer up...


2017 ◽  
Vol 29 (21) ◽  
pp. 9208-9217 ◽  
Author(s):  
Suraj Naskar ◽  
Axel Freytag ◽  
Jens Deutsch ◽  
Natalja Wendt ◽  
Peter Behrens ◽  
...  

2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Leticia García-Cruz ◽  
Vicente Montiel ◽  
José Solla-Gullón

Abstract The application of shape-controlled metal nanoparticles is profoundly impacting the field of electrocatalysis. On the one hand, their use has remarkably enhanced the electrocatalytic activity of many different reactions of interest. On the other hand, their usage is deeply contributing to a correct understanding of the correlations between shape/surface structure and electrochemical reactivity at the nanoscale. However, from the point of view of an electrochemist, there are a number of questions that must be fully satisfied before the evaluation of the shaped metal nanoparticles as electrocatalysts including (i) surface cleaning, (ii) surface structure characterization, and (iii) correlations between particle shape and surface structure. In this chapter, we will cover all these aspects. Initially, we will collect and discuss about the different practical protocols and procedures for obtaining clean shaped metal nanoparticles. This is an indispensable requirement for the establishment of correct correlations between shape/surface structure and electrochemical reactivity. Next, we will also report how some easy-to-do electrochemical experiments including their subsequent analyses can enormously contribute to a detailed characterization of the surface structure of the shaped metal nanoparticles. At this point, we will remark that the key point determining the resulting electrocatalytic activity is the surface structure of the nanoparticles (obviously, the atomic composition is also extremely relevant) but not the particle shape. Finally, we will summarize some of the most significant advances/results on the use of these shaped metal nanoparticles in electrocatalysis covering a wide range of electrocatalytic reactions including fuel cell-related reactions (electrooxidation of formic acid, methanol and ethanol and oxygen reduction) and also CO2 electroreduction. Graphical Abstract:


Sign in / Sign up

Export Citation Format

Share Document