2. Continuous-time linear systems and the Laplace transform

2020 ◽  
pp. 21-38
2013 ◽  
Vol 23 (2) ◽  
pp. 309-315 ◽  
Author(s):  
Tadeusz Kaczorek

Methods for finding solutions of the state equations of descriptor fractional discrete-time and continuous-time linear systems with regular pencils are proposed. The derivation of the solution formulas is based on the application of the Z transform, the Laplace transform and the convolution theorems. Procedures for computation of the transition matrices are proposed. The efficiency of the proposed methods is demonstrated on simple numerical examples.


Author(s):  
Tadeusz Kaczorek

Fractional Positive Continuous-Time Linear Systems and Their ReachabilityA new class of fractional linear continuous-time linear systems described by state equations is introduced. The solution to the state equations is derived using the Laplace transform. Necessary and sufficient conditions are established for the internal and external positivity of fractional systems. Sufficient conditions are given for the reachability of fractional positive systems.


2012 ◽  
Vol 15 (3) ◽  
Author(s):  
Djillali Bouagada ◽  
Paul Dooren

AbstractIn this work we extend a result from the literature on fractional continuous-time linear systems to the case of implicit fractional continuous-time state space models, based on the Caputo fractional derivative. The solution of the problem is derived using the Laplace transform.


2014 ◽  
Vol 24 (3) ◽  
pp. 289-297
Author(s):  
Tadeusz Kaczorek

Abstract A new method is proposed of design of regular positive and asymptotically stable descriptor systems by the use of state-feedbacks for descriptor continuous-time linear systems with singular pencils. The method is based on the reduction of the descriptor system by elementary row and column operations to special form. A procedure for the design of the state-feedbacks gain matrix is presented and illustrated by a numerical example


Sign in / Sign up

Export Citation Format

Share Document