ON PROPORTIONALITY OF REGRESSION COEFFICIENTS IN MISSPECIFIED GENERAL LINEAR REGRESSION MODELS

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Manickavasagar Kayanan ◽  
Pushpakanthie Wijekoon

Among several variable selection methods, LASSO is the most desirable estimation procedure for handling regularization and variable selection simultaneously in the high-dimensional linear regression models when multicollinearity exists among the predictor variables. Since LASSO is unstable under high multicollinearity, the elastic-net (Enet) estimator has been used to overcome this issue. According to the literature, the estimation of regression parameters can be improved by adding prior information about regression coefficients to the model, which is available in the form of exact or stochastic linear restrictions. In this article, we proposed a stochastic restricted LASSO-type estimator (SRLASSO) by incorporating stochastic linear restrictions. Furthermore, we compared the performance of SRLASSO with LASSO and Enet in root mean square error (RMSE) criterion and mean absolute prediction error (MAPE) criterion based on a Monte Carlo simulation study. Finally, a real-world example was used to demonstrate the performance of SRLASSO.


Econometrics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 22 ◽  
Author(s):  
Pierre Perron ◽  
Yohei Yamamoto

In empirical applications based on linear regression models, structural changes often occur in both the error variance and regression coefficients, possibly at different dates. A commonly applied method is to first test for changes in the coefficients (or in the error variance) and, conditional on the break dates found, test for changes in the variance (or in the coefficients). In this note, we provide evidence that such procedures have poor finite sample properties when the changes in the first step are not correctly accounted for. In doing so, we show that testing for changes in the coefficients (or in the variance) ignoring changes in the variance (or in the coefficients) induces size distortions and loss of power. Our results illustrate a need for a joint approach to test for structural changes in both the coefficients and the variance of the errors. We provide some evidence that the procedures suggested by Perron et al. (2019) provide tests with good size and power.


2019 ◽  
Vol 52 (2) ◽  
pp. 115-127
Author(s):  
XIUQIN BAI ◽  
WEIXING SONG

This paper proposes an empirical likelihood confidence region for the regression coefficients in linear regression models when the regression coefficients are subjected to some equality constraints. The shape of the confidence set does not depend on the re-parametrization of the regression model induced by the equality constraint. It is shown that the asymptotic coverage rate attains the nominal confidence level and the Bartlett correction can successfully reduce the coverage error rate from $O(n^{-1})$ to $O(n^{-2})$, where n denotes the sample size. Simulation studies are conducted to evaluate the finite sample performance of the proposed empirical likelihood empirical confidence estimation procedure. Finally, a comparison study is conducted to compare the finite sample performance of the proposed and the classical ellipsoidal confidence sets based on normal theory.


1986 ◽  
Vol 2 (2) ◽  
pp. 220-231 ◽  
Author(s):  
Kazuhiro Ohtani ◽  
Masahito Kobayashi

This article proposes a small sample bounds test for equality between sets of coefficients in two linear regressions with unequal disturbance variances. The probability that our test is inconclusive is given under the null hypothesis. It is also shown that our test is more powerful than the Jayatissa test when the regression coefficients differ substantially.


2018 ◽  
Vol 23 (1) ◽  
pp. 60-71
Author(s):  
Wigiyanti Masodah

Offering credit is the main activity of a Bank. There are some considerations when a bank offers credit, that includes Interest Rates, Inflation, and NPL. This study aims to find out the impact of Variable Interest Rates, Inflation variables and NPL variables on credit disbursed. The object in this study is state-owned banks. The method of analysis in this study uses multiple linear regression models. The results of the study have shown that Interest Rates and NPL gave some negative impacts on the given credit. Meanwhile, Inflation variable does not have a significant effect on credit given. Keywords: Interest Rate, Inflation, NPL, offered Credit.


Sign in / Sign up

Export Citation Format

Share Document