Structural Organization of Tetrapyrrole Pigments in Light- Harvesting Pigment-Protein Complexes

2021 ◽  
Author(s):  
Ingrid Guarnetti Prandi ◽  
Vladislav Sláma ◽  
Cristina Pecorilla ◽  
Lorenzo Cupellini ◽  
Benedetta Mennucci

Light-harvesting complexes (LHCs) are pigment-protein complexes whose main function is to capture sunlight and transfer the energy to reaction centers of photosystems. In response to varying light conditions, LH complexes also play photoregulation and photoprotection roles. In algae and mosses, a sub-family of LHCs, Light-Harvesting complex stress related (LHCSR), is responsible for photoprotective quenching. Despite their functional and evolutionary importance, no direct structural information on LHCSRs is available that can explain their unique properties. In this work we propose a structural model of LHCSR1 from the moss P. Patens, obtained through an integrated computational strategy that combines homology modeling, molecular dynamics, and multiscale quantum chemical calculations. The model is validated by reproducing the spectral properties of LHCSR1. Our model reveals the structural specificity of LHCSR1, as compared with the CP29 LH complex, and poses the basis for understanding photoprotective quenching in mosses.


2020 ◽  
Vol 117 (12) ◽  
pp. 6502-6508 ◽  
Author(s):  
Dariusz M. Niedzwiedzki ◽  
David J. K. Swainsbury ◽  
Daniel P. Canniffe ◽  
C. Neil Hunter ◽  
Andrew Hitchcock

Carotenoids play a number of important roles in photosynthesis, primarily providing light-harvesting and photoprotective energy dissipation functions within pigment–protein complexes. The carbon–carbon double bond (C=C) conjugation length of carotenoids (N), generally between 9 and 15, determines the carotenoid-to-(bacterio)chlorophyll [(B)Chl] energy transfer efficiency. Here we purified and spectroscopically characterized light-harvesting complex 2 (LH2) fromRhodobacter sphaeroidescontaining theN= 7 carotenoid zeta (ζ)-carotene, not previously incorporated within a natural antenna complex. Transient absorption and time-resolved fluorescence show that, relative to the lifetime of the S1state of ζ-carotene in solvent, the lifetime decreases ∼250-fold when ζ-carotene is incorporated within LH2, due to transfer of excitation energy to the B800 and B850 BChlsa. These measurements show that energy transfer proceeds with an efficiency of ∼100%, primarily via the S1→ Qxroute because the S1→ S0fluorescence emission of ζ-carotene overlaps almost perfectly with the Qxabsorption band of the BChls. However, transient absorption measurements performed on microsecond timescales reveal that, unlike the nativeN≥ 9 carotenoids normally utilized in light-harvesting complexes, ζ-carotene does not quench excited triplet states of BChla, likely due to elevation of the ζ-carotene triplet energy state above that of BChla. These findings provide insights into the coevolution of photosynthetic pigments and pigment–protein complexes. We propose that theN≥ 9 carotenoids found in light-harvesting antenna complexes represent a vital compromise that retains an acceptable level of energy transfer from carotenoids to (B)Chls while allowing acquisition of a new, essential function, namely, photoprotective quenching of harmful (B)Chl triplets.


2018 ◽  
Vol 115 (39) ◽  
pp. E9051-E9057 ◽  
Author(s):  
Luca De Vico ◽  
André Anda ◽  
Vladimir Al. Osipov ◽  
Anders Ø. Madsen ◽  
Thorsten Hansen

Natural light-harvesting is performed by pigment–protein complexes, which collect and funnel the solar energy at the start of photosynthesis. The identity and arrangement of pigments largely define the absorption spectrum of the antenna complex, which is further regulated by a palette of structural factors. Small alterations are induced by pigment–protein interactions. In light-harvesting systems 2 and 3 from Rhodoblastus acidophilus, the pigments are arranged identically, yet the former has an absorption peak at 850 nm that is blue-shifted to 820 nm in the latter. While the shift has previously been attributed to the removal of hydrogen bonds, which brings changes in the acetyl moiety of the bacteriochlorophyll, recent work has shown that other mechanisms are also present. Using computational and modeling tools on the corresponding crystal structures, we reach a different conclusion: The most critical factor for the shift is the curvature of the macrocycle ring. The bending of the planar part of the pigment is identified as the second-most important design principle for the function of pigment–protein complexes—a finding that can inspire the design of novel artificial systems.


1990 ◽  
Vol 26 (1) ◽  
pp. 186-195 ◽  
Author(s):  
Marvin W. Fawley ◽  
Cheryl A. Douglas ◽  
Kenneth D. Stewart ◽  
Karl R. Mattox

Sign in / Sign up

Export Citation Format

Share Document