Geodesic orbit Randers metrics on spheres

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Shaoxiang Zhang ◽  
Zaili Yan

AbstractStudying geodesic orbit Randers metrics on spheres, we obtain a complete classification of such metrics. Our method relies upon the classification of geodesic orbit Riemannian metrics on the spheres Sn in [17] and the navigation data in Finsler geometry. We also construct some explicit U(n + 1)-invariant metrics on S2n+1 and Sp(n + 1)U(1)-invariant metrics on S4n+3.

2012 ◽  
Vol 55 (4) ◽  
pp. 870-881 ◽  
Author(s):  
Hui Wang ◽  
Shaoqiang Deng

AbstractIn this paper we study left invariant Einstein–Randers metrics on compact Lie groups. First, we give a method to construct left invariant non-Riemannian Einstein–Randers metrics on a compact Lie group, using the Zermelo navigation data. Then we prove that this gives a complete classification of left invariant Einstein–Randers metrics on compact simple Lie groups with the underlying Riemannian metric naturally reductive. Further, we completely determine the identity component of the group of isometries for this type of metrics on simple groups. Finally, we study some geometric properties of such metrics. In particular, we give the formulae of geodesics and flag curvature of such metrics.


Author(s):  
Y.G. Nikonorov

In this paper, a complete classification of geodesic orbit Riemannian metrics on spheres Sn is obtained. We also construct some explicit examples of geodesic vectors for Sp(n+1)U(1)-invariant metrics on S4n+3.


2020 ◽  
Vol 31 (04) ◽  
pp. 2050030
Author(s):  
M. Atashafrouz ◽  
B. Najafi

The well-known Cheng–Shen conjecture says that every [Formula: see text]-quadratic Randers metric on a closed manifold is a Berwald metric. The class of [Formula: see text]-quadratic Randers metrics contains the class of generalized Douglas–Weyl Randers metrics. In this paper, we give a classification of left-invariant Randers metrics of generalized Douglas–Weyl type on three-dimensional Lie groups. Based on our classification theorem, we find a counter-example for the Cheng–Shen conjecture.


Author(s):  
Jakub Konieczny ◽  
Mariusz Lemańczyk ◽  
Clemens Müllner

AbstractWe obtain a complete classification of complex-valued sequences which are both multiplicative and automatic.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Alexey Sharapov ◽  
Evgeny Skvortsov

Abstract We give a complete classification of dynamical invariants in 3d and 4d Higher Spin Gravity models, with some comments on arbitrary d. These include holographic correlation functions, interaction vertices, on-shell actions, conserved currents, surface charges, and some others. Surprisingly, there are a good many conserved p-form currents with various p. The last fact, being in tension with ‘no nontrivial conserved currents in quantum gravity’ and similar statements, gives an indication of hidden integrability of the models. Our results rely on a systematic computation of Hochschild, cyclic, and Chevalley-Eilenberg cohomology for the corresponding higher spin algebras. A new invariant in Chern-Simons theory with the Weyl algebra as gauge algebra is also presented.


2017 ◽  
Vol 16 (10) ◽  
pp. 1750197 ◽  
Author(s):  
Janez Šter

We provide a strong condition holding for nil-clean quadratic elements in any ring. In particular, our result implies that every nil-clean involution in a ring is unipotent. As a consequence, we give a complete classification of weakly nil-clean rings introduced recently in [Breaz, Danchev and Zhou, Rings in which every element is either a sum or a difference of a nilpotent and an idempotent, J. Algebra Appl. 15 (2016) 1650148, doi: 10.1142/S0219498816501486].


2016 ◽  
Vol 31 (17) ◽  
pp. 1650102 ◽  
Author(s):  
Tahir Hussain ◽  
Sumaira Saleem Akhtar ◽  
Ashfaque H. Bokhari ◽  
Suhail Khan

In this paper, we present a complete classification of Bianchi type II spacetime according to Ricci inheritance collineations (RICs). The RICs are classified considering cases when the Ricci tensor is both degenerate as well as non-degenerate. In case of non-degenerate Ricci tensor, it is found that Bianchi type II spacetime admits 4-, 5-, 6- or 7-dimensional Lie algebra of RICs. In the case when the Ricci tensor is degenerate, majority cases give rise to infinitely many RICs, while remaining cases admit finite RICs given by 4, 5 or 6.


Sign in / Sign up

Export Citation Format

Share Document