scholarly journals On static manifolds and related critical spaces with cyclic parallel Ricci tensor

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
H. Baltazar ◽  
A. Da Silva

Abstract We classify 3-dimensional compact Riemannian manifolds (M 3, g) that admit a non-constant solution to the equation −Δfg +Hess f − f Ric = μ Ric +λg for some special constants (μ, λ), under the assumption that the manifold has cyclic parallel Ricci tensor. Namely, the structures that we study here are: positive static triples, critical metrics of the volume functional, and critical metrics of the total scalar curvature functional. We also classify n-dimensional critical metrics of the volume functional with non-positive scalar curvature and satisfying the cyclic parallel Ricci tensor condition.

2011 ◽  
Vol 31 (1) ◽  
pp. 89 ◽  
Author(s):  
Vedat Asil ◽  
Talat Körpınar ◽  
Essin Turhan

In this paper, we study inextensible flows of tangent developable surfaces of biharmonic B-slant helices in the special three-dimensional Kenmotsu manifold K with η-parallel ricci tensor. We express some interesting relations about inextensible flows of this surfaces.


Author(s):  
Pradip Majhi ◽  
Uday Chand De ◽  
Debabrata Kar

AbstractIn this paper we studyη-Ricci solitons on Sasakian 3-manifolds. Among others we prove that anη-Ricci soliton on a Sasakian 3-manifold is anη-Einstien manifold. Moreover we considerη-Ricci solitons on Sasakian 3-manifolds with Ricci tensor of Codazzi type and cyclic parallel Ricci tensor. Beside these we study conformally flat andφ-Ricci symmetricη-Ricci soliton on Sasakian 3-manifolds. Alsoη-Ricci soliton on Sasakian 3-manifolds with the curvature conditionQ.R= 0 have been considered. Finally, we construct an example to prove the non-existence of properη-Ricci solitons on Sasakian 3-manifolds and verify some results.


2010 ◽  
Vol 03 (04) ◽  
pp. 577-591 ◽  
Author(s):  
Amalendu Ghosh

In this paper we study 3-dimensional contact metric manifolds satisfying certain conditions on the tensor fields *-Ricci tensorS*, h(= ½Lξφ), τ(= Lξg = 2hφ) and the Ricci operator Q. First, we prove that a 3-dimensional non-Sasakian contact metric manifold satisfies. [Formula: see text] (where ⊕X,Y,Z denotes the cyclic sum over X,Y,Z) if and only if M is a generalized (κ, μ)-space. Next, we prove that a 3-dimensional contact metric manifold with vanishing *-Ricci tensor is a generalized (κ, μ)-space. Finally, some results on 3-dimensional contact metric manifold with cyclic η-parallel h or cyclic η-parallel τ or η-parallel Ricci tensor are presented.


Filomat ◽  
2018 ◽  
Vol 32 (14) ◽  
pp. 4971-4980 ◽  
Author(s):  
Simeon Zamkovoy

In this paper we study para-Kenmotsu manifolds. We characterize this manifolds by tensor equations and study their properties. We are devoted to a study of ?-Einstein manifolds. We show that a locally conformally flat para-Kenmotsu manifold is a space of constant negative sectional curvature -1 and we prove that if a para-Kenmotsu manifold is a space of constant ?-para-holomorphic sectional curvature H, then it is a space of constant sectional curvature and H = -1. Finally the object of the present paper is to study a 3-dimensional para-Kenmotsu manifold, satisfying certain curvature conditions. Among other, it is proved that any 3-dimensional para-Kenmotsu manifold with ?-parallel Ricci tensor is of constant scalar curvature and any 3-dimensional para-Kenmotsu manifold satisfying cyclic Ricci tensor is a manifold of constant negative sectional curvature -1.


2019 ◽  
Vol 39 ◽  
pp. 71-85
Author(s):  
AKM Nazimuddin ◽  
Md Showkat Ali

In this paper, we compute the Christoffel Symbols of the first kind, Christoffel Symbols of the second kind, Geodesics, Riemann Christoffel tensor, Ricci tensor and Scalar curvature from a metric which plays a fundamental role in the Riemannian geometry and modern differential geometry, where we consider MATLAB as a software tool for this implementation method. Also we have shown that, locally, any Riemannian 3-dimensional metric can be deformed along a directioninto another metricthat is conformal to a metric of constant curvature GANIT J. Bangladesh Math. Soc.Vol. 39 (2019) 71-85


2021 ◽  
Vol 58 (3) ◽  
pp. 308-318
Author(s):  
Yaning Wang ◽  
Wenjie Wang

In this paper, we prove that the ∗-Ricci tensor of a real hypersurface in complex projective plane ℂP 2 or complex hyperbolic plane ℂH 2 is cyclic parallel if and only if the hypersurface is of type (A). We find some three-dimensional real hypersurfaces having non-vanishing and non-parallel ∗-Ricci tensors which are cyclic parallel.


2019 ◽  
Vol 16 (06) ◽  
pp. 1950092 ◽  
Author(s):  
Yaning Wang ◽  
Xinxin Dai

In this paper, we give a local characterization for the Ricci tensor of an almost Kenmotsu [Formula: see text]-manifold [Formula: see text] to be cyclic-parallel. As an application, we prove that if [Formula: see text] has cyclic-parallel Ricci tensor and satisfies [Formula: see text], (where [Formula: see text] is the Lie derivative of [Formula: see text] along the Reeb flow and both [Formula: see text] and [Formula: see text] are smooth functions such that [Formula: see text] is invariant along the contact distribution), then [Formula: see text] is locally isometric to either the hyperbolic space [Formula: see text] or a non-unimodular Lie group equipped with a left invariant non-Kenmotsu almost Kenmotsu structure.


Sign in / Sign up

Export Citation Format

Share Document