Combined mixed finite element and nonconforming finite volume methods for flow and transport in porous media

Analysis ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Omar El Moutea ◽  
Hassan El Amri

Abstract This paper is concerned with numerical methods for a coupled system of two partial differential equations (PDEs), modeling flow and transport of a contaminant in porous media. This coupled system, arising in modeling of flow and transport in heterogeneous porous media, includes two types of equations: an elliptic and a diffusion-convection equation. We focus on miscible flow in heterogeneous porous media. We use the mixed finite element method for the Darcy flow equation over triangles, and for the concentration equation, we use nonconforming finite volume methods in unstructured mesh. Finally, we show the existence and uniqueness of a solution of this coupled scheme and demonstrate the effectiveness of the methodology by a series of numerical examples.

2021 ◽  
Author(s):  
James Kent

<p>GungHo is the mixed finite-element dynamical core under development by the Met Office. A key component of the dynamical core is the transport scheme, which advects density, temperature, moisture, and the winds, throughout the atmosphere. Transport in GungHo is performed by finite-volume methods, to ensure conservation of certain quantaties. There are a range of different finite-volume schemes being considered for transport, including the Runge-Kutta/method-of-lines and COSMIC/Lin-Rood schemes. Additional horizontal/vertical splitting approaches are also under consideration, to improve the stability aspects of the model. Here we discuss these transport options and present results from the GungHo framework, featuring both prescribed velocity advection tests and full dry dynamical core tests. </p>


2010 ◽  
Vol 17 (3) ◽  
pp. 385-410
Author(s):  
Khadija Zine Dine ◽  
Naceur Achtaich ◽  
Mohamed Chagdali

Sign in / Sign up

Export Citation Format

Share Document