scholarly journals Periodic perturbations of Hamiltonian systems

2016 ◽  
Vol 5 (4) ◽  
Author(s):  
Alessandro Fonda ◽  
Maurizio Garrione ◽  
Paolo Gidoni

AbstractWe prove existence and multiplicity results for periodic solutions of Hamiltonian systems, by the use of a higher dimensional version of the Poincaré–Birkhoff fixed point theorem. The first part of the paper deals with periodic perturbations of a completely integrable system, while in the second part we focus on some suitable global conditions, so to deal with weakly coupled systems.

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Fanfan Chen ◽  
Dingbian Qian ◽  
Xiying Sun ◽  
Yinyin Wu

<p style='text-indent:20px;'>We prove the existence and multiplicity of subharmonic solutions for bounded coupled Hamiltonian systems. The nonlinearities are assumed to satisfy Landesman-Lazer conditions at the zero eigenvalue, and to have some kind of sublinear behavior at infinity. The proof is based on phase plane analysis and a higher dimensional version of the Poincaré-Birkhoff twist theorem by Fonda and Ureña. The results obtained generalize the previous works for scalar second-order differential equations or relativistic equations to higher dimensional systems.</p>


1996 ◽  
Vol 126 (5) ◽  
pp. 1067-1085
Author(s):  
W. M. Rivera

In this paper we discuss C1-linearisations of diffeomorphisms and flows on Banach spaces. Strong foliations of the neighbourhood of the fixed point composed of leaves based on successively larger subspaces (similar to those in [14]) are constructed. Generalised gap conditions which involve the width and separation of vertical bands containing the spectrum of a linear operator are imposed to achieve maximal smoothness. The method of proof generalises that of Hartman and of Mora and Solá-Morales. Our theorems apply to weakly coupled systems of damped wave and beam equations.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Hailong Zhu ◽  
Shengjun Li

The existence and multiplicity of solutions for second-order differential equations with a parameter are discussed in this paper. We are mainly concerned with the semipositone case. The analysis relies on the nonlinear alternative principle of Leray-Schauder and Krasnosel'skii's fixed point theorem in cones.


1999 ◽  
Vol 77 (11) ◽  
pp. 1810-1812 ◽  
Author(s):  
Alex D Bain

Strongly coupled spin systems provide many curious and interesting effects in NMR spectra, one of which is the presence of unexpected (from a first-order viewpoint) lines. A physical reason is given for the presence of these combination lines. The X part of the spectrum of an ABX spin system is analysed as an example. For an ABX system, it is well known that the AB nuclei give a spectrum consisting of two AB-type spectra, corresponding to the two orientations of the X nucleus. It can also be shown that the X part of the spectrum corresponds to the X nucleus undergoing a transition in the presence of an AB-like spin system. For weakly coupled systems, the four observed lines correspond to the four different orientations of the A and B nuclei. For a strongly coupled system, two additional lines may appear, the combination lines. The resulting six lines correspond to the four spin orientations, plus the two zero-quantum transitions. It is shown that these six lines are such that there is no net excitation of the AB-like spin system associated with the X transitions. There is no AB coherence created directly by a pulse applied to X. AB coherence is created as the system evolves, and this is responsible for many of the curious effects. This is shown to be true for all spin sub-systems, which are weakly coupled to a strongly coupled sub-system.Key words: NMR, strong coupling, second-order spectra, ABX spin system, combination lines, spectral analysis.


Sign in / Sign up

Export Citation Format

Share Document