krasnosel’skii’s fixed point theorem
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 4)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 29 (1) ◽  
Author(s):  
G. N. Chhatria ◽  
Said R. Grace ◽  
John R. Graef

AbstractThe authors present necessary and sufficient conditions for the oscillation of a class of second order non-linear neutral dynamic equations with non-positive neutral coefficients by using Krasnosel’skii’s fixed point theorem on time scales. The nonlinear function may be strongly sublinear or strongly superlinear.


2021 ◽  
Vol 5 (4) ◽  
pp. 136
Author(s):  
Chanakarn Kiataramkul ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

In this research work, we study a new class of ψ-Hilfer hybrid fractional integro-differential boundary value problems with three-point boundary conditions. An existence result is established by using a generalization of Krasnosel’skiĭ’s fixed point theorem. An example illustrating the main result is also constructed.


2020 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Abdelkrim Salim ◽  
Mouffak Benchohra ◽  
John R. Graef ◽  
Jamal Eddine Lazreg

This manuscript is devoted to proving some results concerning the existence of solutions to a class of boundary value problems for nonlinear implicit fractional differential equations with non-instantaneous impulses and generalized Hilfer fractional derivatives. The results are based on Banach’s contraction principle and Krasnosel’skii’s fixed point theorem. To illustrate the results, an example is provided.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 451
Author(s):  
Rodrigo López Pouso ◽  
Radu Precup ◽  
Jorge Rodríguez-López

We establish the existence of positive solutions for systems of second–order differential equations with discontinuous nonlinear terms. To this aim, we give a multivalued vector version of Krasnosel’skiĭ’s fixed point theorem in cones which we apply to a regularization of the discontinuous integral operator associated to the differential system. We include several examples to illustrate our theory.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Liu Yang ◽  
Chunfang Shen

By using Krasnosel’skii’s fixed point theorem and the fixed point index theorem in the special function space, we obtain some sufficient conditions for the existence of positive solutions of fourth-order boundary value problem with multipoint boundary conditions. Applications of our results to some special problems are also discussed.


2014 ◽  
Vol 64 (2) ◽  
Author(s):  
John Graef ◽  
Saroj Panigrahi ◽  
P. Reddy

AbstractIn this paper, oscillatory and asymptotic properties of solutions of nonlinear fourth order neutral dynamic equations of the form $(r(t)(y(t) + p(t)y(\alpha _1 (t)))^{\Delta ^2 } )^{\Delta ^2 } + q(t)G(y(\alpha _2 (t))) - h(t)H(y(\alpha _3 (t))) = 0(H)$ and $(r(t)(y(t) + p(t)y(\alpha _1 (t)))^{\Delta ^2 } )^{\Delta ^2 } + q(t)G(y(\alpha _2 (t))) - h(t)H(y(\alpha _3 (t))) = f(t),(NH)$ are studied on a time scale $\mathbb{T}$ under the assumption that $\int\limits_{t_0 }^\infty {\tfrac{t} {{r(t)}}\Delta t = \infty } $ and for various ranges of p(t). In addition, sufficient conditions are obtained for the existence of bounded positive solutions of the equation (NH) by using Krasnosel’skii’s fixed point theorem.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Hailong Zhu ◽  
Shengjun Li

The existence and multiplicity of solutions for second-order differential equations with a parameter are discussed in this paper. We are mainly concerned with the semipositone case. The analysis relies on the nonlinear alternative principle of Leray-Schauder and Krasnosel'skii's fixed point theorem in cones.


2009 ◽  
Vol 2009 ◽  
pp. 1-27
Author(s):  
You-Hui Su ◽  
Can-Yun Huang

This paper makes a study on the existence of positive solution top-Laplacian dynamic equations on time scales𝕋. Some new sufficient conditions are obtained for the existence of at least single or twin positive solutions by using Krasnosel'skii's fixed point theorem and new sufficient conditions are also obtained for the existence of at least triple or arbitrary odd number positive solutions by using generalized Avery-Henderson fixed point theorem and Avery-Peterson fixed point theorem. As applications, two examples are given to illustrate the main results and their differences. These results are even new for the special cases of continuous and discrete equations, as well as in the general time-scale setting.


Sign in / Sign up

Export Citation Format

Share Document