scholarly journals Singularly perturbed Choquard equations with nonlinearity satisfying Berestycki-Lions assumptions

2019 ◽  
Vol 9 (1) ◽  
pp. 413-437 ◽  
Author(s):  
Xianhua Tang ◽  
Sitong Chen

Abstract In the present paper, we consider the following singularly perturbed problem: $$\begin{array}{} \displaystyle \left\{ \begin{array}{ll} -\varepsilon^2\triangle u+V(x)u=\varepsilon^{-\alpha}(I_{\alpha}*F(u))f(u), & x\in \mathbb{R}^N; \\ u\in H^1(\mathbb{R}^N), \end{array} \right. \end{array}$$ where ε > 0 is a parameter, N ≥ 3, α ∈ (0, N), F(t) = $\begin{array}{} \int_{0}^{t} \end{array}$f(s)ds and Iα : ℝN → ℝ is the Riesz potential. By introducing some new tricks, we prove that the above problem admits a semiclassical ground state solution (ε ∈ (0, ε0)) and a ground state solution (ε = 1) under the general “Berestycki-Lions assumptions” on the nonlinearity f which are almost necessary, as well as some weak assumptions on the potential V. When ε = 1, our results generalize and improve the ones in [V. Moroz, J. Van Schaftingen, T. Am. Math. Soc. 367 (2015) 6557-6579] and [H. Berestycki, P.L. Lions, Arch. Rational Mech. Anal. 82 (1983) 313-345] and some other related literature. In particular, we propose a new approach to recover the compactness for a (PS)-sequence, and our approach is useful for many similar problems.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Heng Yang

AbstractIn the present paper, we consider the following singularly perturbed problem: $$ \textstyle\begin{cases} -\varepsilon ^{2}\Delta u+V(x)u-\varepsilon ^{2}\Delta (u^{2})u= \varepsilon ^{-\alpha }(I_{\alpha }*G(u))g(u), \quad x\in \mathbb{R}^{N}; \\ u\in H^{1}(\mathbb{R}^{N}), \end{cases} $$ { − ε 2 Δ u + V ( x ) u − ε 2 Δ ( u 2 ) u = ε − α ( I α ∗ G ( u ) ) g ( u ) , x ∈ R N ; u ∈ H 1 ( R N ) , where $\varepsilon >0$ ε > 0 is a parameter, $N\ge 3$ N ≥ 3 , $\alpha \in (0, N)$ α ∈ ( 0 , N ) , $G(t)=\int _{0}^{t}g(s)\,\mathrm{d}s$ G ( t ) = ∫ 0 t g ( s ) d s , $I_{\alpha }: \mathbb{R}^{N}\rightarrow \mathbb{R}$ I α : R N → R is the Riesz potential, and $V\in \mathcal{C}(\mathbb{R}^{N}, \mathbb{R})$ V ∈ C ( R N , R ) with $0<\min_{x\in \mathbb{R}^{N}}V(x)< \lim_{|y|\to \infty }V(y)$ 0 < min x ∈ R N V ( x ) < lim | y | → ∞ V ( y ) . Under the general Berestycki–Lions assumptions on g, we prove that there exists a constant $\varepsilon _{0}>0$ ε 0 > 0 determined by V and g such that for $\varepsilon \in (0,\varepsilon _{0}]$ ε ∈ ( 0 , ε 0 ] the above problem admits a semiclassical ground state solution $\hat{u}_{\varepsilon }$ u ˆ ε with exponential decay at infinity. We also study the asymptotic behavior of $\{\hat{u}_{\varepsilon }\}$ { u ˆ ε } as $\varepsilon \to 0$ ε → 0 .


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Shuai Yuan ◽  
Fangfang Liao

Abstract In this paper, we consider the following nonlinear problem with general nonlinearity and nonlocal convolution term: $$ \textstyle\begin{cases} -\Delta u+V(x)u+(I_{\alpha }\ast \vert u \vert ^{q}) \vert u \vert ^{q-2}u=f(u), \quad x\in {\mathbb{R}}^{3}, \\ u\in H^{1}(\mathbb{R}^{3}), \quad \end{cases} $$ { − Δ u + V ( x ) u + ( I α ∗ | u | q ) | u | q − 2 u = f ( u ) , x ∈ R 3 , u ∈ H 1 ( R 3 ) , where $a\in (0,3)$ a ∈ ( 0 , 3 ) , $q\in [1+\frac{\alpha }{3},3+\alpha )$ q ∈ [ 1 + α 3 , 3 + α ) , $I_{\alpha }:\mathbb{R}^{3}\rightarrow \mathbb{R}$ I α : R 3 → R is the Riesz potential, $V\in \mathcal{C}(\mathbb{R}^{3},[0,\infty ))$ V ∈ C ( R 3 , [ 0 , ∞ ) ) , $f\in \mathcal{C}(\mathbb{R},\mathbb{R})$ f ∈ C ( R , R ) and $F(t)=\int _{0}^{t}f(s)\,ds$ F ( t ) = ∫ 0 t f ( s ) d s satisfies $\lim_{|t|\to \infty }F(t)/|t|^{\sigma }=\infty $ lim | t | → ∞ F ( t ) / | t | σ = ∞ with $\sigma =\min \{2,\frac{2\beta +2}{\beta }\}$ σ = min { 2 , 2 β + 2 β } where $\beta =\frac{ \alpha +2}{2(q-1)}$ β = α + 2 2 ( q − 1 ) . By using new analytic techniques and new inequalities, we prove the above system admits a ground state solution under mild assumptions on V and f.


2019 ◽  
Vol 150 (3) ◽  
pp. 1377-1400 ◽  
Author(s):  
Daniele Cassani ◽  
Jean Van Schaftingen ◽  
Jianjun Zhang

AbstractFor the Choquard equation, which is a nonlocal nonlinear Schrödinger type equation, $$-\Delta u+V_{\mu, \nu} u=(I_\alpha\ast \vert u \vert ^{({N+\alpha})/{N}}){ \vert u \vert }^{{\alpha}/{N}-1}u,\quad {\rm in} \ {\open R}^N, $$where $N\ges 3$, Vμ,ν :ℝN → ℝ is an external potential defined for μ, ν > 0 and x ∈ ℝN by Vμ,ν(x) = 1 − μ/(ν2 + |x|2) and $I_\alpha : {\open R}^N \to 0$ is the Riesz potential for α ∈ (0, N), we exhibit two thresholds μν, μν > 0 such that the equation admits a positive ground state solution if and only if μν < μ < μν and no ground state solution exists for μ < μν. Moreover, if μ > max{μν, N2(N − 2)/4(N + 1)}, then equation still admits a sign changing ground state solution provided $N \ges 4$ or in dimension N = 3 if in addition 3/2 < α < 3 and $\ker (-\Delta + V_{\mu ,\nu }) = \{ 0\} $, namely in the non-resonant case.


1992 ◽  
Vol 17 (1) ◽  
pp. 107-110
Author(s):  
Shun-Qing Shen ◽  
J. Cai ◽  
Rui-Bao Tao

2014 ◽  
Vol 14 (4) ◽  
Author(s):  
Xiang-dong Fang ◽  
Zhi-qing Han

AbstractIn this paper we are concerned with the quasilinear Schrödinger equation−Δu + V(x)u − Δ(uwhere N ≥ 3, 4 < p < 4N/(N − 2), and V(x) and q(x) go to some positive limits V


Sign in / Sign up

Export Citation Format

Share Document