Some Notes on Function Spaces and Dirichlet Forms on Self-Similar Sets

2006 ◽  
Vol 6 (3) ◽  
Author(s):  
Yuan Liu ◽  
Zhi-Ying Wen

AbstractGrigor’yan, Hu and Lau [10] introduced sub-Gaussian heat kernels on general metric measure spaces and defined a family of function spaces to characterize the domain of associated Dirichlet forms. In this paper, we will improve their results about norm equivalence. As an application, we construct self-similar Dirichlet forms on a class of self-similar sets containing the Sierpiński gaskets and carpets. Then we prove the Poincaré inequality and give effective resistance estimates by the self-similarity. Consequently, we have a new equivalent characterization of heat kernel estimates through function spaces with strong recurrent condition.

2017 ◽  
Vol 272 (8) ◽  
pp. 3311-3346 ◽  
Author(s):  
Alexander Grigor'yan ◽  
Eryan Hu ◽  
Jiaxin Hu

Fractals ◽  
2017 ◽  
Vol 25 (02) ◽  
pp. 1750021
Author(s):  
R. K. ASWATHY ◽  
SUNIL MATHEW

Self-similarity is a common tendency in nature and physics. It is wide spread in geo-physical phenomena like diffusion and iteration. Physically, an object is self-similar if it is invariant under a set of scaling transformation. This paper gives a brief outline of the analytical and set theoretical properties of different types of weak self-similar sets. It is proved that weak sub self-similar sets are closed under finite union. Weak sub self-similar property of the topological boundary of a weak self-similar set is also discussed. The denseness of non-weak super self-similar sets in the set of all non-empty compact subsets of a separable complete metric space is established. It is proved that the power of weak self-similar sets are weak super self-similar in the product metric and weak self-similarity is preserved under isometry. A characterization of weak super self-similar sets using weak sub contractions is also presented. Exact weak sub and super self-similar sets are introduced in this paper and some necessary and sufficient conditions in terms of weak condensation IFS are presented. A condition for a set to be both exact weak super and sub self-similar is obtained and the denseness of exact weak super self similar sets in the set of all weak self-similar sets is discussed.


Author(s):  
ZHAOZHI FAN

In this paper we study self-similarity of free stochastic processes. We establish the noncommutative counterpart of Lamperti's self-similar processes. We develop the characterization of noncommutative self-similar processes through a modification of Voiculescu transform, the free cumulant transform. We study the connection between free self-similarity, strict ⊞-stability and ⊞-self-decomposability. In particular, we derive the properties of free self-similar processes and their connection to strict ⊞-stability and ⊞-self-decomposability, that turn out to be consistent with their classical analogue.


2013 ◽  
Vol 123 (12) ◽  
pp. 4373-4406 ◽  
Author(s):  
Michael Hinz ◽  
Michael Röckner ◽  
Alexander Teplyaev

2021 ◽  
Vol 271 (1330) ◽  
Author(s):  
Zhen-Qing Chen ◽  
Takashi Kumagai ◽  
Jian Wang

In this paper, we consider symmetric jump processes of mixed-type on metric measure spaces under general volume doubling condition, and establish stability of two-sided heat kernel estimates and heat kernel upper bounds. We obtain their stable equivalent characterizations in terms of the jumping kernels, variants of cut-off Sobolev inequalities, and the Faber-Krahn inequalities. In particular, we establish stability of heat kernel estimates for α \alpha -stable-like processes even with α ≥ 2 \alpha \ge 2 when the underlying spaces have walk dimensions larger than 2 2 , which has been one of the major open problems in this area.


2009 ◽  
Vol 7 (1) ◽  
pp. 61-89 ◽  
Author(s):  
Natasha Samko

In connection with application to various problems of operator theory, we study almost monotonic functionsw(x, r) depending on a parameterxwhich runs a metric measure spaceX, and the so called index numbersm(w, x),M(w, x) of such functions, and consider some generalized Zygmund, Bary, Lozinskii and Stechkin conditions. The main results contain necessary and sufficient conditions, in terms of lower and upper bounds of indicesm(w, x) andM(w, x) , for the uniform belongness of functionsw(·,r) to Zygmund-Bary-Stechkin classes. We give also applications to local dimensions in metric measure spaces and characterization of some integral inequalities involving radial weights and measures of balls in such spaces.


Author(s):  
Juha Kinnunen ◽  
Parantap Shukla

Abstract.This work has two principal aims. The first is to obtain a characterization of the closure of


2012 ◽  
Vol 23 (10) ◽  
pp. 1250110 ◽  
Author(s):  
JEFFREY S. CASE

Smooth metric measure spaces have been studied from the two different perspectives of Bakry–Émery and Chang–Gursky–Yang, both of which are closely related to work of Perelman on the Ricci flow. These perspectives include a generalization of the Ricci curvature and the associated quasi-Einstein metrics, which include Einstein metrics, conformally Einstein metrics, gradient Ricci solitons and static metrics. In this paper, we describe a natural perspective on smooth metric measure spaces from the point of view of conformal geometry and show how it unites these earlier perspectives within a unified framework. We offer many results and interpretations which illustrate the unifying nature of this perspective, including a natural variational characterization of quasi-Einstein metrics as well as some interesting families of examples of such metrics.


Sign in / Sign up

Export Citation Format

Share Document