Periodic Solutions of a Singular Equation With Indefinite Weight

2010 ◽  
Vol 10 (4) ◽  
Author(s):  
José Luis Bravo ◽  
Pedro J. Torres

AbstractMotivated by some relevant physical applications, we study the existence and uniqueness of T-periodic solutions for a second order differential equation with a piecewise constant singularity which changes sign. Other questions like the stability and robustness of the periodic solution are considered.

2019 ◽  
Vol 149 (5) ◽  
pp. 1135-1152 ◽  
Author(s):  
José Godoy ◽  
Manuel Zamora

AbstractAs a consequence of the main result of this paper efficient conditions guaranteeing the existence of a T −periodic solution to the second-order differential equation $${u}^{\prime \prime} = \displaystyle{{h(t)} \over {u^\lambda }}$$are established. Here, h ∈ L(ℝ/Tℤ) is a piecewise-constant sign-changing function and the non-linear term presents a weak singularity at 0 (i.e. λ ∈ (0, 1)).


2009 ◽  
Vol 2009 ◽  
pp. 1-14 ◽  
Author(s):  
Gen-qiang Wang ◽  
Sui Sun Cheng

Based on a continuation theorem of Mawhin, a unique periodic solution is found for a second-order nonlinear differential equation with piecewise constant argument.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Yun Xin ◽  
Xiaoxiao Cui ◽  
Jie Liu

Abstract The main purpose of this paper is to obtain an exact expression of the positive periodic solution for a first-order differential equation with attractive and repulsive singularities. Moreover, we prove the existence of at least one positive periodic solution for this equation with an indefinite singularity by applications of topological degree theorem, and give the upper and lower bounds of the positive periodic solution.


2018 ◽  
Vol 24 (2) ◽  
pp. 127-137
Author(s):  
Jaume Llibre ◽  
Ammar Makhlouf

Abstract We provide sufficient conditions for the existence of periodic solutions of the second-order differential equation with variable potentials {-(px^{\prime})^{\prime}(t)-r(t)p(t)x^{\prime}(t)+q(t)x(t)=f(t,x(t))} , where the functions {p(t)>0} , {q(t)} , {r(t)} and {f(t,x)} are {\mathcal{C}^{2}} and T-periodic in the variable t.


2012 ◽  
Vol 2012 ◽  
pp. 1-26
Author(s):  
Ni Hua ◽  
Tian Li-Xin

This paper deals with a first-order differential equation with a polynomial nonlinear term. The integrability and existence of periodic solutions of the equation are obtained, and the stability of periodic solutions of the equation is derived.


Sign in / Sign up

Export Citation Format

Share Document