Existence and Concentration of Solutions for Choquard Equations with Steep Potential Well and Doubly Critical Exponents

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yong-Yong Li ◽  
Gui-Dong Li ◽  
Chun-Lei Tang

AbstractIn this paper, we investigate the non-autonomous Choquard equation-\Delta u+\lambda V(x)u=(I_{\alpha}\ast F(u))F^{\prime}(u)\quad\text{in}\ \mathbb{R}^{N},where N\geq 4, \lambda>0, V\in C(\mathbb{R}^{N},\mathbb{R}) is bounded from below and has a potential well, I_{\alpha} is the Riesz potential of order \alpha\in(0,N) and F(u)=\frac{1}{2_{\alpha}^{*}}\lvert u\rvert^{2_{\alpha}^{*}}+\frac{1}{2_{*}^{\alpha}}\lvert u\rvert^{2_{*}^{\alpha}}, in which 2_{\alpha}^{*}=\frac{N+\alpha}{N-2} and 2_{*}^{\alpha}=\frac{N+\alpha}{N} are upper and lower critical exponents due to the Hardy–Littlewood–Sobolev inequality, respectively. Based on the variational methods, by combining the mountain pass theorem and Nehari manifold, we obtain the existence and concentration of positive ground state solutions for 𝜆 large enough if 𝑉 is nonnegative in \mathbb{R}^{N}; further, by the linking theorem, we prove the existence of nontrivial solutions for 𝜆 large enough if 𝑉 changes sign in \mathbb{R}^{N}.

Author(s):  
Canlin Gan

This paper deals with the following system \begin{equation*} \left\{\begin{aligned} &{-\Delta u+ (\lambda A(x)+1)u-(2\omega+\phi) \phi u=\mu f(u)+u^{5}}, & & {\quad x \in \mathbb{R}^{3}}, \\ &{\Delta \phi=(\omega+\phi) u^{2}}, & & {\quad x \in \mathbb{R}^{3}}, \end{aligned}\right. \end{equation*} where $\lambda, \mu>0$ are positive parameters. Under some suitable conditions on $A$ and $f$, we show the boundedness of Cerami sequence for the above system by adopting Poho\v{z}aev identity and then prove the existence of ground state solution for the above system on Nehari manifold by using Br\’{e}zis-Nirenberg technique, which improve the existing result in the literature.


2019 ◽  
Vol 22 (04) ◽  
pp. 1950023 ◽  
Author(s):  
Xinfu Li ◽  
Shiwang Ma

In this paper, we study the Brezis–Nirenberg type problem for Choquard equations in [Formula: see text] [Formula: see text] where [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] or [Formula: see text] are the critical exponents in the sense of Hardy–Littlewood–Sobolev inequality and [Formula: see text] is the Riesz potential. Based on the results of the subcritical problems, and by using the subcritical approximation and the Pohožaev constraint method, we obtain a positive and radially nonincreasing ground-state solution in [Formula: see text] for the problem. To the end, the regularity and the Pohožaev identity of solutions to a general Choquard equation are obtained.


2020 ◽  
Vol 10 (1) ◽  
pp. 152-171
Author(s):  
Sitong Chen ◽  
Xianhua Tang ◽  
Jiuyang Wei

Abstract This paper deals with the following Choquard equation with a local nonlinear perturbation: $$\begin{array}{} \displaystyle \left\{ \begin{array}{ll} - {\it\Delta} u+u=\left(I_{\alpha}*|u|^{\frac{\alpha}{2}+1}\right)|u|^{\frac{\alpha}{2}-1}u +f(u), & x\in \mathbb{R}^2; \\ u\in H^1(\mathbb{R}^2), \end{array} \right. \end{array}$$ where α ∈ (0, 2), Iα : ℝ2 → ℝ is the Riesz potential and f ∈ 𝓒(ℝ, ℝ) is of critical exponential growth in the sense of Trudinger-Moser. The exponent $\begin{array}{} \displaystyle \frac{\alpha}{2}+1 \end{array}$ is critical with respect to the Hardy-Littlewood-Sobolev inequality. We obtain the existence of a nontrivial solution or a Nehari-type ground state solution for the above equation in the doubly critical case, i.e. the appearance of both the lower critical exponent $\begin{array}{} \displaystyle \frac{\alpha}{2}+1 \end{array}$ and the critical exponential growth of f(u).


Author(s):  
B. B. V. Maia ◽  
O. H. Miyagaki

In this paper, we investigate the existence and nonexistence of results for a class of Hamiltonian-Choquard-type elliptic systems. We show the nonexistence of classical nontrivial solutions for the problem \[ \begin{cases} -\Delta u + u= ( I_{\alpha} \ast |v|^{p} )v^{p-1} \text{ in } \mathbb{R}^{N},\\ -\Delta v + v= ( I_{\beta} \ast |u|^{q} )u^{q-1} \text{ in } \mathbb{R}^{N}, \\ u(x),v(x) \rightarrow 0 \text{ when } |x|\rightarrow \infty, \end{cases} \] when $(N+\alpha )/p + (N+\beta )/q \leq 2(N-2)$ (if $N\geq 3$ ) and $(N+\alpha )/p + (N+\beta )/q \geq 2N$ (if $N=2$ ), where $I_{\alpha }$ and $I_{\beta }$ denote the Riesz potential. Second, via variational methods and the generalized Nehari manifold, we show the existence of a nontrivial non-negative solution or a Nehari-type ground state solution for the problem \[ \begin{cases} -\Delta u + u= (I_{\alpha} \ast |v|^{\frac{\alpha}{2}+1})|v|^{\frac{\alpha}{2}-1}v + g(v) \hbox{ in } \mathbb{R}^{2},\\ - \Delta v + v= (I_{\beta} \ast |u|^{\frac{\beta}{2}+1})|u|^{\frac{\beta}{2}-1}u + f(u), \hbox{ in } \mathbb{R}^{2},\\ u,v \in H^{1}(\mathbb{R}^{2}), \end{cases} \] where $\alpha ,\,\beta \in (0,\,2)$ and $f,\,g$ have exponential critical growth in the Trudinger–Moser sense.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jing Zhang ◽  
Qiongfen Zhang

AbstractIn this paper, we focus on the existence of solutions for the Choquard equation $$\begin{aligned} \textstyle\begin{cases} {-}\Delta {u}+V(x)u=(I_{\alpha }* \vert u \vert ^{\frac{\alpha }{N}+1}) \vert u \vert ^{ \frac{\alpha }{N}-1}u+\lambda \vert u \vert ^{p-2}u,\quad x\in \mathbb{R}^{N}; \\ u\in H^{1}(\mathbb{R}^{N}), \end{cases}\displaystyle \end{aligned}$$ { − Δ u + V ( x ) u = ( I α ∗ | u | α N + 1 ) | u | α N − 1 u + λ | u | p − 2 u , x ∈ R N ; u ∈ H 1 ( R N ) , where $\lambda >0$ λ > 0 is a parameter, $\alpha \in (0,N)$ α ∈ ( 0 , N ) , $N\ge 3$ N ≥ 3 , $I_{\alpha }: \mathbb{R}^{N}\to \mathbb{R}$ I α : R N → R is the Riesz potential. As usual, $\alpha /N+1$ α / N + 1 is the lower critical exponent in the Hardy–Littlewood–Sobolev inequality. Under some weak assumptions, by using minimax methods and Pohožaev identity, we prove that this problem admits a ground state solution if $\lambda >\lambda _{*}$ λ > λ ∗ for some given number $\lambda _{*}$ λ ∗ in three cases: (i) $2< p<\frac{4}{N}+2$ 2 < p < 4 N + 2 , (ii) $p=\frac{4}{N}+2$ p = 4 N + 2 , and (iii) $\frac{4}{N}+2< p<2^{*}$ 4 N + 2 < p < 2 ∗ . Our result improves the previous related ones in the literature.


Author(s):  
Xiaonan Liu ◽  
Shiwang Ma ◽  
Jiankang Xia

Abstract We are concerned with the semi-classical states for the Choquard equation $$-{\epsilon }^2\Delta v + Vv = {\epsilon }^{-\alpha }(I_\alpha *|v|^p)|v|^{p-2}v,\quad v\in H^1({\mathbb R}^N),$$ where N ⩾ 2, I α is the Riesz potential with order α ∈ (0, N − 1) and 2 ⩽ p < (N + α)/(N − 2). When the potential V is assumed to be bounded and bounded away from zero, we construct a family of localized bound states of higher topological type that concentrate around the local minimum points of the potential V as ε → 0. These solutions are obtained by combining the Byeon–Wang's penalization approach and the classical symmetric mountain pass theorem.


Sign in / Sign up

Export Citation Format

Share Document