Application of g-frames in conjugate gradient

2016 ◽  
Vol 7 (3) ◽  
Author(s):  
Hassan Jamali ◽  
Neda Momeni

AbstractThis paper proposes an iterative method for solving an operator equation on a separable Hilbert space

Author(s):  
A. Källström ◽  
B. D. Sleeman

SynopsisConsider the multiparameter systemwhere ut is an element of a separable Hilbert space Hi, i = 1, …, n. The operators Sij are assumed to be bounded symmetric operators in Hi and Ai is assumed self-adjoint. In addition consider the operator equationwhere B is densely defined and closed in a separable Hilbert space H and Tj, j = 1, …, n is a bounded operator in H. The problem treated in this paper is to seek an expression for a solution v of (**) in terms of the eigenfunctions of the system (*).


2016 ◽  
Vol 13 (1) ◽  
pp. 6-10
Author(s):  
Nguyễn Bường

In the note, for finding a solution of nonlinear operator equation of Hammerstein’s type an iterative process in infinite-dimentional Hilbert space is shown, where a new iteration is constructed basing on two last steps. An example in the theory of nonlinear integral equations is given for illustration.


Author(s):  
Raffaella Carbone ◽  
Federico Girotti

AbstractWe introduce a notion of absorption operators in the context of quantum Markov processes. The absorption problem in invariant domains (enclosures) is treated for a quantum Markov evolution on a separable Hilbert space, both in discrete and continuous times: We define a well-behaving set of positive operators which can correspond to classical absorption probabilities, and we study their basic properties, in general, and with respect to accessibility structure of channels, transience and recurrence. In particular, we can prove that no accessibility is allowed between the null and positive recurrent subspaces. In the case, when the positive recurrent subspace is attractive, ergodic theory will allow us to get additional results, in particular about the description of fixed points.


1974 ◽  
Vol 25 (6) ◽  
pp. 660-661
Author(s):  
A. T. Zaplitnaya

2019 ◽  
Vol 10 (4) ◽  
pp. 377-394
Author(s):  
Anirudha Poria ◽  
Jitendriya Swain

AbstractLet {\mathbb{H}} be a separable Hilbert space. In this paper, we establish a generalization of Walnut’s representation and Janssen’s representation of the {\mathbb{H}}-valued Gabor frame operator on {\mathbb{H}}-valued weighted amalgam spaces {W_{\mathbb{H}}(L^{p},L^{q}_{v})}, {1\leq p,q\leq\infty}. Also, we show that the frame operator is invertible on {W_{\mathbb{H}}(L^{p},L^{q}_{v})}, {1\leq p,q\leq\infty}, if the window function is in the Wiener amalgam space {W_{\mathbb{H}}(L^{\infty},L^{1}_{w})}. Further, we obtain the Walnut representation and invertibility of the frame operator corresponding to Gabor superframes and multi-window Gabor frames on {W_{\mathbb{H}}(L^{p},L^{q}_{v})}, {1\leq p,q\leq\infty}, as a special case by choosing the appropriate Hilbert space {\mathbb{H}}.


1982 ◽  
Vol 34 (6) ◽  
pp. 1245-1250 ◽  
Author(s):  
A. van Daele

Let M be a von Neumann algebra acting on a Hilbert space and assume that M has a separating and cyclic vector ω in . Then it can happen that M contains a proper von Neumann subalgebra N for which ω is still cyclic. Such an example was given by Kadison in [4]. He considered and acting on where is a separable Hilbert space. In fact by a result of Dixmier and Maréchal, M, M′ and N have a joint cyclic vector [3]. Also Bratteli and Haagerup constructed such an example ([2], example 4.2) to illustrate the necessity of one of the conditions in the main result of their paper. In fact this situation seems to occur rather often in quantum field theory (see [1] Section 24.2, [3] and [4]).


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Alfredas Račkauskas

Abstract We investigate the asymptotic normality of distributions of the sequence {\sum_{k\in\mathbb{Z}}u_{n,k}X_{k}} , {n\in\mathbb{N}} , where {(X_{k},k\in\mathbb{Z})} either is a sequence of i.i.d. random elements or constitutes a linear process with i.i.d. innovations in a separable Hilbert space. The weights {(u_{n,k})} are in general a family of linear bounded operators. This model includes operator weighted sums of Hilbert space valued linear processes, operator-wise discounted sums in a Hilbert space as well some extensions of classical summation methods.


1974 ◽  
Vol 26 (3) ◽  
pp. 565-575 ◽  
Author(s):  
W. E. Longstaff

A collection of subspaces of a Hilbert space is called a nest if it is totally ordered by inclusion. The set of all bounded linear operators leaving invariant each member of a given nest forms a weakly-closed algebra, called a nest algebra. Nest algebras were introduced by J. R. Ringrose in [9]. The present paper is concerned with generating nest algebras as weakly-closed algebras, and in particular with the following question which was first raised by H. Radjavi and P. Rosenthal in [8], viz: Is every nest algebra on a separable Hilbert space generated, as a weakly-closed algebra, by two operators? That the answer to this question is affirmative is proved by first reducing the problem using the main result of [8] and then by using a characterization of nests due to J. A. Erdos [2].


Sign in / Sign up

Export Citation Format

Share Document