An agent-based architecture for production scheduling in dynamic job-shop manufacturing system

2018 ◽  
Vol 66 (6) ◽  
pp. 492-502 ◽  
Author(s):  
Om Ji Shukla ◽  
Gunjan Soni ◽  
Rajesh Kumar ◽  
Sujil A

Abstract In a highly competitive environment, effective production is one of the key issues which can be addressed by efficient production planning and scheduling in the manufacturing system. This paper develops an agent-based architecture which enables integration of production planning and scheduling. In addition, this architecture will facilitate real time production scheduling as well as provide a multi-agent system (MAS) platform on which multiple agents will interact to each other. A case study of job-shop manufacturing system (JMS) has been considered in this paper for implementing the concept of MAS. The modeling of JMS has been created in SimEvents which integrates an agent-based architecture developed by Stateflow to transform into dynamic JMS. Finally, the agent-based architecture is evaluated using utilization of each machine in the shop floor with respect to time.

2011 ◽  
Vol 268-270 ◽  
pp. 292-296 ◽  
Author(s):  
Wen Hao Wang ◽  
Qiong Zhu ◽  
Jie Zhang

In the practical application of push-pull based production planning and scheduling architecture, the manufacturing system was found lacking of collaborative mechanism, especially for a networked-manufacturing environment, which requires each individual manufacturer interact and cooperate with each other for a collaborative manufacturing. This paper presents a production planning and scheduling architecture for networked-manufacturing system based on available-to-promise, which can effectively merge forecast-driven production activity with order-driven production activity, thus ensures the steady and prompt supply of material, and also cooperation and mutual benefit of individual manufacturer. This architecture consists of 1) an ATP-based order management and decision-making system, 2) a push-pull based multi-plant master production schedule collaboration model, 3) a pre-reactive collaborative replenishment model, 4) a production scheduling model of unrelated parallel machine and 5) the corresponding production planning and scheduling methods for each model. By combining the concept of ATP, this architecture can not only provide resource planning for networked-manufacturing system, but also offer quick response and promise to customer requests.


Author(s):  
Xutang Zhang ◽  
Xinhua Liu ◽  
Gaoliang Peng

This study intends to propose an intelligent system with agent technology in order to realize integration and cooperation of multi-project production planning and scheduling process. The agent-based system framework, in which various intelligent agents worked together to perform multi-project production planning and scheduling tasks in an autonomous and collaborative way, is put forward. The system consists of three categories of agents and functional definition of each intelligent agent is presented. Moreover, agents communication mechanism and cooperation sequence diagram are proposed. Furthermore, an intelligent algorithm based on fuzzy comprehensive evaluation is designed to resolve competition conflicts among the agents. Finally, an experiment example was illustrated and the algorithm was demonstrated feasible and efficient.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1189
Author(s):  
Xinchao Li ◽  
Xin Jin ◽  
Shan Lu ◽  
Zhe Li ◽  
Yue Wang ◽  
...  

This paper presents a dual-objective optimization model for production scheduling of bioethanol plant with carbon-efficient strategies. The model is developed throughout the bioethanol production process. Firstly, the production planning and scheduling of the bioethanol plant’s transportation, storage, pretreatment, and ethanol manufacturing are fully considered. Secondly, the carbon emissions in the ethanol manufacturing process are integrated into the model to form a dual-objective optimization model that simultaneously optimizes the production plan and carbon emissions. The effects of different biomass raw materials with optional pelletization density and pretreatment methods on production scheduling are analyzed. The influence of demand and pretreatment cost on selecting a pretreatment method and total profit is considered. A membership weighted method is developed to solve the dual-objective model. The carbon emission model and economic model are integrated into one model for analysis. An example is given to verify the effectiveness of the optimization model. At the end of the paper, the limitation of this study is discussed to provide directions for future research.


2004 ◽  
Vol 01 (04) ◽  
pp. 359-371 ◽  
Author(s):  
GIDEON HALEVI

Theoretical production planning and scheduling is actually very simple task: The plant gets orders which defines the product, the quantity and delivery dates. The resources of the plants are known, the product bill of material is known and the task of production scheduling is to make sure that the orders will be ready on time, that's all. It seems strange that in order to meet this simple task, over 100 complex production planning methods were proposed. Some of the outstanding ones are: PICS; MRP; ERP; GT; TOC; FMS; IMS; CIM; CE; JIT; Kanaban; TQM; Agent…, AGILE etc. Yet the search for "THE" method is carried on. In this paper an attempt to analyze why production planning is regarded as a complex task, and why the search for "THE" production planning method is still an open topic for researchers. Furthermore, to demonstrate how introduction of flexibility will restore the simplicity of production planning.


Sign in / Sign up

Export Citation Format

Share Document