Injury classification and level detection of the spinal cord based on the optimized recurrent neural network

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Munavar Jasim K ◽  
Thomas Brindha

AbstractObjectivesSpinal cord damage is one of the traumatic situations in persons that may cause the loss of sensation and proper functioning of the muscles either temporarily or permanently. Hence, steps to assure the recovery through the early functioning and precaution could safe-guard a proper interceptive. To ensure the recovery of spinal cord damage through optimized recurrent neural network.MethodsThe research on the spinal cord injury classification and level detection is done using the CT images, which is initially given to the segmentation that is done using the adaptive thresholding methodology. Once the segments are formed, the disc is localized using the sparse fuzzy C-means clustering approach. In the next step, the features are extracted from the localized disc and the features include the connectivity features, statistical features, image-level features, grid-level features, Histogram of Oriented Gradients (HOG), and Linear Gradient Pattern (LGP). Then, the injury detection is done based on the Crow search Rider Optimization algorithm-based Deep Convolutional Neural Network (CS-ROA-based DCNN). Once the result regarding the presence of the injury is obtained, the injury-level classification is done based on the proposed Deep Recurrent Neural Network (Deep RNN), and in case of the absence of injury, the process is terminated. Therefore, the injury detection classifier derives the level of the injury, such as normal, wedge, biconcavity, and crush.ResultsThe experimentation is carried out using an Osteoporotic vertebral fractures database. The performance of the injury level detection based on the proposed model is evaluated based on accuracy, sensitivity, and specificity. The proposed model achieves the maximal accuracy of 0.895, maximal sensitivity of 0.871, and the maximal specificity of 0.933 with respect to K-Fold.ConclusionsThe experimental results show that the proposed model is better than the existing models in terms of accuracy, sensitivity, and specificity.

2020 ◽  
Vol 17 (8) ◽  
pp. 3421-3426
Author(s):  
D. Deva Hema ◽  
J. Tharun ◽  
G. Arun Dev ◽  
N. Sateesh

Our day-to-day activity is highly influenced by development of Internet. One of the rapid growing area in Internet is E-commerce. People are eager to buy products from online sites like Amazon, embay, Flipkart etc. Customers can write reviews about the products purchased online. The purchasing of good through online has been increasing exponentially since last few years. As there is no physical contact with goods before purchasing through online, people totally rely on reviews about the product before purchasing it. Hence review plays an important role in deciding the quality of the product. There are many customers who give online reviews about the product after using it. Hence the quality of the product is decided by the reviews of the customers. Thus, detection of fake reviews has become one of the important task. The proposed system will help in finding such fake reviews about the product, so that the fake reviews can be eliminated. Therefore, the purchasing of the products will be totally based on the genuine reviews. The proposed system uses Deep Recurrent Neural Network (DRNN) to predict the fake reviews and the performance of the proposed method has compared with Naïve Bayes Algorithm. The proposed model shows good accuracy and can handle huge amount of data over the existing system.


2020 ◽  
Author(s):  
Ramachandro Majji

BACKGROUND Cancer is one of the deadly diseases prevailing worldwide and the patients with cancer are rescued only when the cancer is detected at the very early stage. Early detection of cancer is essential as, in the final stage, the chance of survival is limited. The symptoms of cancers are rigorous and therefore, all the symptoms should be studied properly before the diagnosis. OBJECTIVE Propose an automatic prediction system for classifying cancer to malignant or benign. METHODS This paper introduces the novel strategy based on the JayaAnt lion optimization-based Deep recurrent neural network (JayaALO-based DeepRNN) for cancer classification. The steps followed in the developed model are data normalization, data transformation, feature dimension detection, and classification. The first step is the data normalization. The goal of data normalization is to eliminate data redundancy and to mitigate the storage of objects in a relational database that maintains the same information in several places. After that, the data transformation is carried out based on log transformation that generates the patterns using more interpretable and helps fulfill the supposition, and to reduce skew. Also, the non-negative matrix factorization is employed for reducing the feature dimension. Finally, the proposed JayaALO-based DeepRNN method effectively classifies cancer-based on the reduced dimension features to produce a satisfactory result. RESULTS The proposed JayaALO-based DeepRNN showed improved results with maximal accuracy of 95.97%, the maximal sensitivity of 95.95%, and the maximal specificity of 96.96%. CONCLUSIONS The resulted output of the proposed JayaALO-based DeepRNN is used for cancer classification.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Jianlei Zhang ◽  
Yukun Zeng ◽  
Binil Starly

AbstractData-driven approaches for machine tool wear diagnosis and prognosis are gaining attention in the past few years. The goal of our study is to advance the adaptability, flexibility, prediction performance, and prediction horizon for online monitoring and prediction. This paper proposes the use of a recent deep learning method, based on Gated Recurrent Neural Network architecture, including Long Short Term Memory (LSTM), which try to captures long-term dependencies than regular Recurrent Neural Network method for modeling sequential data, and also the mechanism to realize the online diagnosis and prognosis and remaining useful life (RUL) prediction with indirect measurement collected during the manufacturing process. Existing models are usually tool-specific and can hardly be generalized to other scenarios such as for different tools or operating environments. Different from current methods, the proposed model requires no prior knowledge about the system and thus can be generalized to different scenarios and machine tools. With inherent memory units, the proposed model can also capture long-term dependencies while learning from sequential data such as those collected by condition monitoring sensors, which means it can be accommodated to machine tools with varying life and increase the prediction performance. To prove the validity of the proposed approach, we conducted multiple experiments on a milling machine cutting tool and applied the model for online diagnosis and RUL prediction. Without loss of generality, we incorporate a system transition function and system observation function into the neural net and trained it with signal data from a minimally intrusive vibration sensor. The experiment results showed that our LSTM-based model achieved the best overall accuracy among other methods, with a minimal Mean Square Error (MSE) for tool wear prediction and RUL prediction respectively.


Sign in / Sign up

Export Citation Format

Share Document