Renal Ketone Body Metabolism. Distribution of 3-Oxoacid CoA-Transferase and 3-Hydroxybutyrate Dehydrogenase along the Mouse Nephron

1983 ◽  
Vol 364 (2) ◽  
pp. 1727-1738 ◽  
Author(s):  
Walter G. GUDER ◽  
Susanne PÜRSCHEL ◽  
Gabriele WIRTHENSOHN
2017 ◽  
Vol 9 (1) ◽  
pp. 31-40
Author(s):  
Juraiporn Somboonwong ◽  
Khunkhong Huchaiyaphum ◽  
Onanong Kulaputana ◽  
Phisit Prapunwattana

Abstract Background Monounsaturated fat (MUFA) also has glucose-lowering action, but its effect on ketone bodies is unknown. Objectives To examine the effects of high-MUFA diet alone or in combination with exercise training, which can improve glucose and ketone body metabolism, in a rat model of diabetes. Methods Wistar rats were administered streptozotocin to induce diabetes and then randomly divided into five groups: sedentary rats fed a regular diet (1), a high-saturated-fat diet (2), a high-MUFA diet (3); and exercisetrained rats fed a regular diet (4), and a high-MUFA diet (5). Training was by a treadmill twice daily, 5 days/week. At 12 weeks, glucose, glycated hemoglobin (HbA1c), insulin, nonesterified fatty acids (NEFA), and β-hydroxybutyrate levels were measured in cardiac blood. Activity of the overall ketone synthesis pathway was determined in liver and 3-ketoacyl-CoA transferase activity determined in gastrocnemius muscle. Results A high-MUFA diet tended to lower plasma glucose without affecting other biochemical variables. Training did not change glucose metabolism, but significantly reduced serum NEFA. Only the high-MUFA diet plus training significantly decreased HbA1c levels. Hepatic ketone synthesis was decreased and 3-ketoacyl-CoA transferase activity was increased by training alone or in combination with a high-MUFA diet. Changes in NEFA, β-hydroxybutyrate, and the enzymatic activities in response to training plus a high-MUFA diet were comparable to those caused by training alone. Conclusion A high-MUFA diet alone does not alter ketone body metabolism. Combination of a MUFA-rich diet and exercise training is more effective than either MUFA or exercise alone for lowering HbA1c.


2021 ◽  
Vol 15 ◽  
Author(s):  
Daniela Liśkiewicz ◽  
Arkadiusz Liśkiewicz ◽  
Marta M. Nowacka-Chmielewska ◽  
Mateusz Grabowski ◽  
Natalia Pondel ◽  
...  

Experimental and clinical data support the neuroprotective properties of the ketogenic diet and ketone bodies, but there is still a lot to discover to comprehensively understand the underlying mechanisms. Autophagy is a key mechanism for maintaining cell homeostasis, and therefore its proper function is necessary for preventing accelerated brain aging and neurodegeneration. Due to many potential interconnections, it is possible that the stimulation of autophagy may be one of the mediators of the neuroprotection afforded by the ketogenic diet. Recent studies point to possible interconnections between ketone body metabolism and autophagy. It has been shown that autophagy is essential for hepatic and renal ketogenesis in starvation. On the other hand, exogenous ketone bodies modulate autophagy both in vitro and in vivo. Many regional differences occur between brain structures which concern i.e., metabolic responses and autophagy dynamics. The aim of the present study was to evaluate the influence of the ketogenic diet on autophagic markers and the ketone body utilizing and transporting proteins in the hippocampus and frontal cortex. C57BL/6N male mice were fed with two ketogenic chows composed of fat of either animal or plant origins for 4 weeks. Markers of autophagosome formation as well as proteins associated with ketolysis (BDH1—3-hydroxybutyrate dehydrogenase 1, SCOT/OXCT1—succinyl CoA:3-oxoacid CoA transferase), ketone transport (MCT1—monocarboxylate transporter 1) and ketogenesis (HMGCL, HMGCS2) were measured. The hippocampus showed a robust response to nutritional ketosis in both changes in the markers of autophagy as well as the levels of ketone body utilizing and transporting proteins, which was also accompanied by increased concentrations of ketone bodies in this brain structure, while subtle changes were observed in the frontal cortex. The magnitude of the effects was dependent on the type of ketogenic diet used, suggesting that plant fats may exert a more profound effect on the orchestrated upregulation of autophagy and ketone body metabolism markers. The study provides a foundation for a deeper understanding of the possible interconnections between autophagy and the neuroprotective efficacy of nutritional ketosis.


2013 ◽  
Vol 304 (4) ◽  
pp. E363-E374 ◽  
Author(s):  
David G. Cotter ◽  
Rebecca C. Schugar ◽  
Anna E. Wentz ◽  
D. André d'Avignon ◽  
Peter A. Crawford

During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1+/− mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states.


1981 ◽  
Vol 196 (3) ◽  
pp. 747-756 ◽  
Author(s):  
B Crabtree ◽  
D J Taylor ◽  
J E Coombs ◽  
R A Smith ◽  
S P Templer ◽  
...  

1. The activities of several enzymes of carbohydrate, lipid, acetate and ketone-body metabolism were measured in lactating mammary glands from rats, mice, rabbits, guinea pigs, sows, sheep, cows and goats. The intracellular distributions of many of the enzymes were measured by fractional extraction. 2. Acetyl-CoA synthetase was predominantly cytoplasmic in rats and guinea pigs, but was more mitochondrial in the other species. The different location of this enzyme in rats and mice is discussed in relation to the disposal of reducing equivalents. 3. 3-Oxo acid CoA-transferase and acetoacetyl-CoA thiolase assayed at 600 microM-CoA were predominantly mitochondrial in all species investigated. Acetoacetyl-CoA thiolase assayed at 8 microM-CoA was predominantly cytoplasmic, except in rabbits and guinea pigs. Ruminants appeared to possess little, if any, of the cytoplasmic enzyme. 4. The activities and distributions of NADP-isocitrate dehydrogenase were consistent with a role in supplying cytoplasmic NADPH in ruminant tissue, and indicated that this system may also occur in guinea pigs.


Diabetes ◽  
1992 ◽  
Vol 41 (8) ◽  
pp. 968-974 ◽  
Author(s):  
A. Avogaro ◽  
A. Valerio ◽  
L. Gnudi ◽  
A. Maran ◽  
M. Zolli ◽  
...  

1960 ◽  
Vol 235 (2) ◽  
pp. 318-325 ◽  
Author(s):  
George I. Drummond ◽  
Joseph R. Stern

2001 ◽  
Vol 29 (2) ◽  
pp. 237-240
Author(s):  
R. D. Evans ◽  
M. Stubbs ◽  
G. F. Gibbons ◽  
E. A. Newsholme

Derek Williamson's scientific career spanned the ‘Golden Age’ of research into metabolic regulation, to which he made an important and sustained contribution. Derek joined Hans Krebs' laboratory at Sheffield University in 1946 and moved to Krebs' MRC Unit in Oxford in 1960. He elaborated an enzymic method for the determination of acetoacetate and 3-hydroxybutyrate [Williamson, Mellanby and Krebs, Biochem. J. (1962) 82, 90–96], which opened up the field of ketone body metabolism and its regulation and became a Citation Classic. Another Citation Classic followed [Williamson, Lund and Krebs, Biochem. J. (1967) 103, 514–527]. He moved with Krebs to the Metabolic Research Laboratory at the Radcliffe Infirmary in 1967, where he blossomed, formulating his ideas about the integrated regulation of metabolic pathways, particularly with regard to fatty acid oxidation, lipid synthesis and ketone body metabolism. His success was illustrated by more than 200 publications. Derek implanted and nurtured a sense of the excitement of scientific discovery in his colleagues and students, and he worked hard to provide a friendly, supportive and encouraging environment. Many lives have been enriched by the privilege of working with him.


Sign in / Sign up

Export Citation Format

Share Document