scholarly journals A new European record of Diadesmis fukushimae and its transference to Humidophila genus (Bacillariophyta)

2015 ◽  
Vol 74 (2) ◽  
pp. 245-252
Author(s):  
Csilla Kövér ◽  
János Korponai ◽  
Sándor Harangi ◽  
Krisztina Buczkó

Abstract Diadesmis fukushimae, a rare oligotraphenic diatom, was found in some high mountain lakes of Romania. Its occurrence in the Parâng and Retezat Mountains is the second European record of the species. To date D. fukushimae has been known only from the type locality (Shenandoah National Park, Virginia, USA) and from a spring (Grotta Guernica, Dolomiti Bellunesi National Park (south-eastern Alps, Italy). Investigation by scanning electron microscopy showed that this species should be transferred to the recently established genus Humidophila. A new combination is proposed, Humidophila fukushimae. The morphological details of the European population are also presented.

2013 ◽  
Vol 10 (2) ◽  
pp. 1037-1050 ◽  
Author(s):  
E. W. Helbling ◽  
P. Carrillo ◽  
J. M. Medina-Sánchez ◽  
C. Durán ◽  
G. Herrera ◽  
...  

Abstract. Global change, together with human activities, has resulted in increasing amounts of organic material (including nutrients) that water bodies receive. This input further attenuates the penetration of solar radiation, leading to the view that opaque lakes are more "protected" from solar ultraviolet radiation (UVR) than clear ones. Vertical mixing, however, complicates this view as cells are exposed to fluctuating radiation regimes, for which the effects have, in general, been neglected. Furthermore, the combined impacts of mixing, together with those of UVR and nutrient inputs are virtually unknown. In this study, we carried out complex in situ experiments in three high mountain lakes of Spain (Lake Enol in the National Park Picos de Europa, Asturias, and lakes Las Yeguas and La Caldera in the National Park Sierra Nevada, Granada), used as model ecosystems to evaluate the joint impact of these climate change variables. The main goal of this study was to address the question of how short-term pulses of nutrient inputs, together with vertical mixing and increased UVR fluxes modify the photosynthetic responses of phytoplankton. The experimentation consisted in all possible combinations of the following treatments: (a) solar radiation: UVR + PAR (280–700 nm) versus PAR (photosynthetically active radiation) alone (400–700 nm); (b) nutrient addition (phosphorus (P) and nitrogen (N)): ambient versus addition (P to reach to a final concentration of 30 μg P L−1, and N to reach N:P molar ratio of 31); and (c) mixing: mixed (one rotation from surface to 3 m depth (speed of 1 m 4 min−1, total of 10 cycles)) versus static. Our findings suggest that under ambient nutrient conditions there is a synergistic effect between vertical mixing and UVR, increasing phytoplankton photosynthetic inhibition and excretion of organic carbon (EOC) from opaque lakes as compared to algae that received constant mean irradiance within the epilimnion. The opposite occurs in clear lakes where antagonistic effects were determined, with mixing partially counteracting the negative effects of UVR. Nutrient input, mimicking atmospheric pulses from Saharan dust, reversed this effect and clear lakes became more inhibited during mixing, while opaque lakes benefited from the fluctuating irradiance regime. These climate change related scenarios of nutrient input and increased mixing, would not only affect photosynthesis and production in lakes, but might also further influence the microbial loop and trophic interactions via enhanced EOC under fluctuating UVR exposure.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 243
Author(s):  
Javier Alcocer ◽  
Luis A. Oseguera ◽  
Diana Ibarra-Morales ◽  
Elva Escobar ◽  
Lucero García-Cid

High-mountain lakes are among the most comparable ecosystems globally and recognized sentinels of global change. The present study pursued to identify how the benthic macroinvertebrates (BMI) communities of two tropical, high mountain lakes, El Sol and La Luna, Central Mexico, have been affected by global/regional environmental pressures. We compared the environmental characteristics and the BMI communities between 2000–2001 and 2017–2018. We identified three principal environmental changes (the air and water temperature increased, the lakes’ water level declined, and the pH augmented and became more variable), and four principal ecological changes in the BMI communities [a species richness reduction (7 to 4), a composition change, and a dominant species replacement all of them in Lake El Sol, a species richness increase (2 to 4) in Lake La Luna, and a drastic reduction in density (38% and 90%) and biomass (92%) in both lakes]. The air and water temperature increased 0.5 °C, and lakes water level declined 1.5 m, all suggesting an outcome of climate change. Contrarily to the expected acidification associated with acid precipitation, both lakes deacidified, and the annual pH fluctuation augmented. The causes of the deacidification and the deleterious impacts on the BMI communities remained to be identified.


2014 ◽  
Vol 73 (3) ◽  
Author(s):  
Renata Trevisan ◽  
Marco Picarella ◽  
Frank B. Dazzo ◽  
Stefano Bona ◽  
Giuseppe Morabito ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document