climatic warming
Recently Published Documents


TOTAL DOCUMENTS

342
(FIVE YEARS 54)

H-INDEX

62
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Zhuoxuan Xia ◽  
Lingcao Huang ◽  
Chengyan Fan ◽  
Shichao Jia ◽  
Zhanjun Lin ◽  
...  

Abstract. The important Qinghai Tibet Engineering Corridor (QTEC) covers the part of the Highway and Railway underlain by permafrost. The permafrost on the QTEC is sensitive to climate warming and human disturbance and suffers accelerating degradation. Retrogressive thaw slumps (RTSs) are slope failures due to the thawing of ice-rich permafrost. They typically retreat and expand at high rates, damaging infrastructure, and releasing carbon preserved in frozen ground. Along the critical and essential corridor, RTSs are commonly distributed but remain poorly investigated. To compile the first comprehensive inventory of RTSs, this study uses an iteratively semi-automatic method built on deep learning to delineate thaw slumps in the 2019 PlanetScope CubeSat images over a ~54,000 km2 corridor area. The method effectively assesses every image pixel using DeepLabv3+ with limited training samples and manually inspects the deep-learning-identified thaw slumps based on their geomorphic features and temporal changes. The inventory includes 875 RTSs, of which 474 are clustered in the Beiluhe region, and 38 are near roads or railway lines. The dataset is available at https://doi.org/10.1594/PANGAEA.933957 (Xia et al., 2021), with the Chinese version at https://data.tpdc.ac.cn/zh-hans/disallow/50de2d4f-75e1-4bad-b316-6fb91d915a1a/. These RTSs tend to be located on north-facing slopes with gradients of 1.2°–18.1° and distributed at medium elevations ranging from 4511 to 5212 m. a.s.l. They prefer to develop on land receiving relatively low annual solar radiation (from 2900 to 3200 kWh m−2), alpine meadow covered, and silt loam underlay. The results provide a significant and fundamental benchmark dataset for quantifying thaw slump changes in this vulnerable region undergoing strong climatic warming and extensive human activities.


2022 ◽  
Vol 12 ◽  
Author(s):  
Min Lyu ◽  
Mengke Sun ◽  
Josep Peñuelas ◽  
Jordi Sardans ◽  
Jun Sun ◽  
...  

Climate change could negatively alter plant ecosystems if rising temperatures exceed optimal conditions for obtaining carbon. The acclimation of plants to higher temperatures could mitigate this effect, but the potential of subtropical forests to acclimate still requires elucidation. We used space-for-time substitution to determine the photosynthetic and respiratory-temperature response curves, optimal temperature of photosynthesis (Topt), photosynthetic rate at Topt, temperature sensitivity (Q10), and the rate of respiration at a standard temperature of 25°C (R25) for Pinus taiwanensis at five elevations (1200, 1400, 1600, 1800, and 2000 m) in two seasons (summer and winter) in the Wuyi Mountains in China. The response of photosynthesis in P. taiwanensis leaves to temperature at the five elevations followed parabolic curves, and the response of respiration to temperature increased with temperature. Topt was higher in summer than winter at each elevation and decreased significantly with increasing elevation. Q10 decreased significantly with increasing elevation in summer but not winter. These results showed a strong thermal acclimation of foliar photosynthesis and respiration to current temperatures across elevations and seasons, and that R25 increased significantly with elevation and were higher in winter than summer at each elevation indicating that the global warming can decrease R25. These results strongly suggest that this thermal acclimation will likely occur in the coming decades under climate change, so the increase in respiration rates of P. taiwanensis in response to climatic warming may be smaller than predicted and thus may not increase atmospheric CO2 concentrations.


2022 ◽  
Vol 37 (1) ◽  
pp. 106
Author(s):  
Sara Ryding ◽  
Marcel Klaassen ◽  
Glenn J. Tattersall ◽  
Janet L. Gardner ◽  
Matthew R.E. Symonds
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
Jinbin Zheng ◽  
Heikki Hänninen ◽  
Jianhong Lin ◽  
Sitian Shen ◽  
Rui Zhang

Pecan (Carya illinoinensis) is an important nut tree species in its native areas in temperate and subtropical North America, and as an introduced crop in subtropical southeastern China as well. We used process-based modeling to assess the effects of climatic warming in southeastern China on the leaf-out phenology of pecan seedlings and the subsequent risk of “false springs,” i.e., damage caused by low temperatures occurring as a result of prematurely leafing out. In order to maximize the biological realism of the model used in scenario simulations, we developed the model on the basis of experiments explicitly designed for determining the responses modeled. The model showed reasonable internal accuracy when calibrated against leaf-out observations in a whole-tree chamber (WTC) experiment with nine different natural-like fluctuating temperature treatments. The model was used to project the timing of leaf-out in the period 2022–2099 under the warming scenarios RCP4.5 and RCP8.5 in southeastern China. Two locations in the main pecan cultivation area in the northern subtropical zone and one location south of the main cultivation area were addressed. Generally, an advancing trend of leaf-out was projected for all the three locations under both warming scenarios, but in the southern location, a delay was projected under RCP8.5 in many years during the first decades of the 21st century. In the two northern locations, cold damage caused by false springs was projected to occur once in 15–26 years at most, suggesting that pecan cultivation can be continued relatively safely in these two locations. Paradoxically, more frequent cold damage was projected for the southern location than for the two northern locations. The results for the southern location also differed from those for the northern locations in that more frequent cold damage was projected under the RCP4.5 warming scenario (once in 6 years) than under the RCP8.5 scenario (once in 11 years) in the southern location. Due to the uncertainties of the model applied, our conclusions need to be re-examined in an additional experimental study and further model development based on it; but on the basis of our present results, we do not recommend starting large-scale pecan cultivation in locations south of the present main pecan cultivation area in southeastern subtropical China.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yajie Dong ◽  
Naiqin Wu ◽  
Fengjiang Li ◽  
Houyuan Lu

The magnitude and rate of the expansion of the East Asian summer monsoon (EASM) rain belt under future climatic warming are unclear. Appropriate ecological proxy data may provide an improved understanding of the spatial extension of the EASM during past warming intervals. We reconstructed the spatiotemporal pattern of the extension of the EASM since the Last Glacial Maximum (LGM), using six well-dated mollusk fossil sequences from Chinese loess sections located on the modern northern edge of the EASM. The abundance of typical dominant mollusk species indicative of EASM intensity shows a delayed response, from ∼17 ka in the southeastern sections to ∼9 ka in the northwestern sections, during the last deglacial warming. Isoline plots based on a mollusk data synthesis show that the mollusk EASM indicators have a northeast–southwest zonal distribution for both the present-day, the cold LGM, and the warm mid-Holocene, which is consistent with the spatial pattern of modern precipitation. The resulting estimated expansion rate of EASM intensity accelerated during ∼12–9 ka (∼50 km/ka), which corresponds to the early Holocene interval of rapid climatic warming, a northwestward shift of ∼150 km compared to today. This implies that the northern fringe of the EASM in northern China will become wetter in the coming century, under moderate warming scenarios.


Author(s):  
Sara Ryding ◽  
Marcel Klaassen ◽  
Glenn J. Tattersall ◽  
Janet L. Gardner ◽  
Matthew R.E. Symonds
Keyword(s):  

Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 383
Author(s):  
Christian Körner ◽  
Erika Hiltbrunner

The alpine belt hosts the treeless vegetation above the high elevation climatic treeline. The way alpine plants manage to thrive in a climate that prevents tree growth is through small stature, apt seasonal development, and ‘managing’ the microclimate near the ground surface. Nested in a mosaic of micro-environmental conditions, these plants are in a unique position by a close-by neighborhood of strongly diverging microhabitats. The range of adjacent thermal niches that the alpine environment provides is exceeding the worst climate warming scenarios. The provided mountains are high and large enough, these are conditions that cause alpine plant species diversity to be robust against climatic change. However, the areal extent of certain habitat types will shrink as isotherms move upslope, with the potential areal loss by the advance of the treeline by far outranging the gain in new land by glacier retreat globally.


2021 ◽  
Author(s):  
Paul Huxley ◽  
Kris Murray ◽  
Samraat Pawar ◽  
Lauren Cator

Abstract Mathematical models that incorporate the temperature dependence of lab-measured life history traits are increasingly used to predict how climatic warming will affect ectotherms, including disease vectors and other arthropods. These temperature-trait relationships are typically measured under laboratory conditions that ignore how conspecific competition in depleting resource environments—a commonly occurring scenario in nature—regulates natural populations. Here, we used laboratory experiments on the mosquito Aedes aegypti, combined with a stage-structured population model, to show that intensified larval competition in ecologically-realistic depleting resource environments can significantly diminish the vector’s maximal population-level fitness across the entire temperature range, cause a 6°C decrease in the optimal temperature for fitness, and contract its thermal niche width by 10°C. Our results provide evidence for future studies to consider competition dynamics under depleting resources when predicting how eukaryotic ectotherms will respond to climatic warming.


Author(s):  
Jie Liang ◽  
Rachel L. Lupien ◽  
Haichao Xie ◽  
Richard S. Vachula ◽  
Mark A. Stevenson ◽  
...  

Geology ◽  
2021 ◽  
Author(s):  
Sanaa El-Sayed ◽  
Matt Friedman ◽  
Tarek Anan ◽  
Mahmoud A. Faris ◽  
Hesham Sallam

The Paleocene-Eocene thermal maximum (PETM) was a short interval (120–220 k.y.) of elevated global temperatures, but it is important for understanding biotic responses to climatic warming. Consequences of the PETM for marine fishes remain unclear, despite evidence that they might have been particularly vulnerable to increasing temperatures. Part of this uncertainty reflects a lack of data on marine fishes across a range of latitudes at the time. We report a new paleotropical (~12°N paleolatitude) fish fauna from the Dababiya Quarry Member of Egypt dating to the PETM. This assemblage—Ras Gharib A—is a snapshot of a time when tropical sea-surface temperatures approached limits lethal for many modern fishes. Despite extreme conditions, the Ras Gharib A fauna is compositionally similar to well-known, midlatitude Lagerstätten from the PETM or later in the Eocene. The Ras Gharib A fauna shows that diverse fish communities thrived in the paleotropics during the PETM, that these assemblages shared elements with coeval assemblages at higher latitudes, and that some taxa had broad latitudinal ranges substantially exceeding those found during cooler intervals.


Sign in / Sign up

Export Citation Format

Share Document