carbon concentration
Recently Published Documents


TOTAL DOCUMENTS

697
(FIVE YEARS 162)

H-INDEX

46
(FIVE YEARS 5)

Author(s):  
Glécio M. Siqueira ◽  
Anderson de A. Souza ◽  
Patrícia M. C. Albuquerque ◽  
Osvaldo Guedes Filho

ABSTRACT The objectives of this study were to evaluate the degree of multifractality of the spatial distribution of altitude, organic carbon concentration, and invertebrate fauna diversity, and to characterize the degree of joint multifractal association among these variables. Soil sampling was performed every 20 m across a 2,540 m transect, with a total of 128 sampling points in a sugarcane area in Goiana municipality, Pernambuco State. For each sampling point, the altitude, organic carbon concentration, and macrofauna diversity (diversity indices and functional groups) were evaluated. Spatial distributions of altitude, organic carbon concentration, and macrofauna diversity were characterized by the generalized dimension spectrum (Dq) and singularity spectrums [f(α) versus α], which presented multifractal behavior with different degrees of heterogeneity in scales. Joint multifractal analysis was useful for revealing the relationships at multiple scales between the studied variables, as demonstrated by the non-detected associations using traditional statistical methods. To quantify the spatial variability of edaphic fauna based on the multiple scales and association sets in the joint dimension, the impact of agricultural production systems on biological diversity can be described. All of the studied variables displayed a multifractal behavior with greater or lower heterogeneity degree depending on the variable, with altitude and organic carbon being the most homogeneous attributes.


CATENA ◽  
2022 ◽  
Vol 209 ◽  
pp. 105810
Author(s):  
Qiang Jin ◽  
Chun Wang ◽  
Jordi Sardans ◽  
Tony Vancov ◽  
Yunying Fang ◽  
...  

Author(s):  
Sarah-Jane Potts ◽  
Tatyana Korochkina ◽  
Alex Holder ◽  
Eifion Jewell ◽  
Chris Phillips ◽  
...  

AbstractScreen-printing inks containing various morphologies of carbon are used in the production of a variety of printed electronics applications. Particle morphology influences the rheology of the ink which will affect the deposition and therefore the electrical performance of a printed component. To assess the effect of both carbon morphology and concentration on print topography and conductivity, screen printable carbon inks with differing loading concentrations of graphite, carbon black and graphite nanoplatelets (GNPs) were formulated, printed and characterised, with rheological and novel print visualisation techniques used to elucidate the mechanisms responsible. Carbon morphology had significant effects on the packing of particles. The smaller carbon black particles had more interparticle interactions leading to better conductivities, but also higher ink viscosities and elasticities than the other morphologies. Increases in carbon concentration led to increases in film thickness and roughness for all morphologies. However, beyond a critical point further increases in carbon concentration led to agglomerations of particles, mesh marking and increases in surface roughness, preventing further improvements in the print conductivity. The optimal loading concentrations were identifiable using a custom-made screen-printing apparatus used with high speed imaging for all morphologies. Notable increases in filamentation during ink separation were found to occur with further increases in carbon concentration beyond the optimum. As this point could not be identified using shear rheology alone, this method combined with shear rheology could be used to optimise the carbon concentration of screen-printing inks, preventing the use of excess material which has no benefit on print quality and conductivity.


Author(s):  
J Kailola ◽  
G Mardiatmoko ◽  
R Simanjuntak ◽  
A Kastanya

Binuang bini (Octomeles sumatrana Miq) is a fast-growing tree with numerous economic benefits, such as the provision of wood for carpentry purposes, building boards, water management, and absorption of carbon dioxide (CO2). Therefore, this tree species has great potential and needs to be included in Reducing Emission from Deforestation and Forest Degradation (REDD)+'s mitigation program to tackle climate change. In its development, REDD+ has made it possible to carry out carbon trading in the world. Therefore, countries capable of performing protective functions and carry out reforestation, afforestation, and restoration, have the opportunity to be involved in world carbon trading. This study aims to determine the moisture content and carbon absorption rate of Binuang bini trees as a first step to regulate the allometric equation using destructive and laboratory analysis. The results show that the water content in the roots, leaves, as well as the base, middle, and tip of the stem were: 73.69%, 68.39%, 65.59%, 61.22%, and 66.26%, respectively. Furthermore, the sample test results indicate a very close relationship between carbon concentration and absorbance in the O. sumatrana tree with a simple linear regression equation: Y = 0.002X + 0.0593 with R2 = 0.9896. Therefore, this regression equation can be used to calculate the carbon concentration sample for the O. sumatrana tree fraction. The carbon content in 3 tree samples with a breast height diameter of 9.24 cm, 10.08 cm, and 11.68 cm was 2,585 kg. 2,913 kg, and 4,654 kg, respectively. In addition, the carbon sequestration for each tree diameter per year is 1.581 kg year-1, 1,782 kg year-1and 2,847 kg year-1, respectively.


2021 ◽  
Vol 13 (23) ◽  
pp. 13061
Author(s):  
Ravindra Prasad ◽  
Sanjay Kumar Gupta ◽  
Nisha Shabnam ◽  
Carlos Yure B. Oliveira ◽  
Arvind Kumar Nema ◽  
...  

The rising concentration of global atmospheric carbon dioxide (CO2) has severely affected our planet’s homeostasis. Efforts are being made worldwide to curb carbon dioxide emissions, but there is still no strategy or technology available to date that is widely accepted. Two basic strategies are employed for reducing CO2 emissions, viz. (i) a decrease in fossil fuel use, and increased use of renewable energy sources; and (ii) carbon sequestration by various biological, chemical, or physical methods. This review has explored microalgae’s role in carbon sequestration, the physiological apparatus, with special emphasis on the carbon concentration mechanism (CCM). A CCM is a specialized mechanism of microalgae. In this process, a sub-cellular organelle known as pyrenoid, containing a high concentration of Ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco), helps in the fixation of CO2. One type of carbon concentration mechanism in Chlamydomonas reinhardtii and the association of pyrenoid tubules with thylakoids membrane is represented through a typical graphical model. Various environmental factors influencing carbon sequestration in microalgae and associated techno-economic challenges are analyzed critically.


Sign in / Sign up

Export Citation Format

Share Document