Performance evaluation of Sysmex XN hematology analyzer in umbilical cord blood: a comparison study with Sysmex XE-2100

Author(s):  
Hanah Kim ◽  
Mina Hur ◽  
Sang-Gyeu Choi ◽  
Hee-Won Moon ◽  
Yeo-Min Yun ◽  
...  

AbstractThe Sysmex XN (XN) modular system (Sysmex, Kobe, Japan) is a new automated hematology analyzer equipped with different principles from its previous version, Sysmex XE-2100. We compared the performances of Sysmex XN and XE-2100 in umbilical cord blood (CB) specimens.In 160 CB specimens, complete blood count (CBC) parameters and white blood cells (WBC) differentials were compared between the two analyzers. Their flagging performances for blasts, abnormal/atypical lymphocytes, immature granulocytes and/or left-shift (IG), and nucleated red blood cells (NRBC) counts were compared with manual counts. For the blast flagging, Q values by Sysmex XN were further compared with manual slide review.Sysmex XN and XE-2100 showed high or very high correlations for most CBC parameters but variable correlations for WBC differentials. Compared with XE-2100, XN showed significantly different flagging performances for blasts, abnormal/atypical lymphocytes, and IG. The flagging efficiency for blasts was significantly better on Sysmex XN than on XE-2100 (85.0% vs. 38.8%): Sysmex XN showed a remarkably increased specificity of blast flag, compromising its sensitivity of blast flag. Among the 24 specimens with blasts (range, 0.5%–1.5%), only one (4.2%) showed a positive Q value.This study highlighted the remarkable differences of flagging performances between Sysmex XN and XE-2100 in CB specimens. The Sysmex XN modular system seems to be a suitable and practical option for the CB specimens used for hematopoietic stem cell transplantation as well as for the specimens from neonates.

2009 ◽  
Vol 61 (4) ◽  
pp. 791-796 ◽  
Author(s):  
M.L.B. Cápua ◽  
A.E. Santana ◽  
A.P.M. Nakage ◽  
A.V. Godoy ◽  
A. Kataoka

The hematological parameters red blood cells (RBC) and total white blood cells (WBC) counts, hematocrit, hemoglobin concentration, and RBC indexes (median corpuscular volume and median corpuscular hemoglobin concentration) were determined and T CD5+ lymphocytes and CD4+ and CD8+ subpopulations of the umbilical cord blood (UCB) of dogs were quantified by the cytofluorimetric technique. Nine adult Beagles, from two do five-year old, were used as control. The umbilical cord blood (UCB) was collected from 20 neonate dogs. The method for the UCB collection was adequate to obtain sufficient quantity of blood for the accomplishment of the hematological analyses and lymphocyte quantification. Cytoscopic preparations of the UCB suggested high erythropoietic activity. There was no difference for the global leukocyte and lymphocyte counts between the groups. UCB T lymphocyte counts were lower than those obtained for adult dogs. The proportion of CD4:CD8 showed a great dominance of T CD4+ cells over T CD8+ lymphocytes in UCB.


Blood ◽  
1995 ◽  
Vol 86 (8) ◽  
pp. 3118-3122 ◽  
Author(s):  
C Biernaux ◽  
M Loos ◽  
A Sels ◽  
G Huez ◽  
P Stryckmans

Abstract The major bcr-abl fusion gene is presently seen as the hallmark of chronic myeloid leukemia (CML) and presumably as the cause of its development. Accordingly, long-term disappearance of bcr-abl after intensive therapy is considered to be a probable cure of CML. The nested reverse transcriptase-polymerase chain reaction (RT-PCR) provides a powerful tool for minimal residual CML detection. The RT-PCR was optimized by (1) increasing the amount of total RNA involved in the reverse transcription reaction to correspond to total RNA extracted from 10(8) cells, (2) using a specific abl primer in this reverse reaction, and (3) reamplifying 10% of the RT-PCR product in nested amplification. This optimized RT-PCR permitted us to detect up to 1 copy of RNA bcr-abl synthesised in vitro, mixed with yeast RNA in an equivalent quantity to 10(8) white blood cells (WBCs). Using this highly sensitive RT-PCR during the follow-up of CML patients, a signal was unexpectedly found in healthy controls. Therefore, a systematic study of the possible expression of bcr-abl RNA in the WBCs of healthy adults and children and in umbilical cord blood was undertaken. It showed the presence of bcr-abl transcript in the blood of 22 of 73 healthy adults and in the blood of 1 of 22 children but not in 22 samples of umbilical cord blood.


Blood ◽  
1995 ◽  
Vol 86 (8) ◽  
pp. 3118-3122 ◽  
Author(s):  
C Biernaux ◽  
M Loos ◽  
A Sels ◽  
G Huez ◽  
P Stryckmans

The major bcr-abl fusion gene is presently seen as the hallmark of chronic myeloid leukemia (CML) and presumably as the cause of its development. Accordingly, long-term disappearance of bcr-abl after intensive therapy is considered to be a probable cure of CML. The nested reverse transcriptase-polymerase chain reaction (RT-PCR) provides a powerful tool for minimal residual CML detection. The RT-PCR was optimized by (1) increasing the amount of total RNA involved in the reverse transcription reaction to correspond to total RNA extracted from 10(8) cells, (2) using a specific abl primer in this reverse reaction, and (3) reamplifying 10% of the RT-PCR product in nested amplification. This optimized RT-PCR permitted us to detect up to 1 copy of RNA bcr-abl synthesised in vitro, mixed with yeast RNA in an equivalent quantity to 10(8) white blood cells (WBCs). Using this highly sensitive RT-PCR during the follow-up of CML patients, a signal was unexpectedly found in healthy controls. Therefore, a systematic study of the possible expression of bcr-abl RNA in the WBCs of healthy adults and children and in umbilical cord blood was undertaken. It showed the presence of bcr-abl transcript in the blood of 22 of 73 healthy adults and in the blood of 1 of 22 children but not in 22 samples of umbilical cord blood.


2021 ◽  
Vol 15 ◽  
Author(s):  
Suman Kumar Ray ◽  
Sukhes Mukherjee

: The umbilical cord blood is usually disposed of as an unwanted material after parturition; however, today, it is viewed as a regenerative medication so as to create the organ tissues. This cord blood gathered from the umbilical cord is made up of mesenchymal stem cells, hematopoietic stem cells, and multipotent non-hematopoietic stem cells having many therapeutic effects as these stem cells are utilized to treat malignancies, hematological ailments, inborn metabolic problem, and immune deficiencies. Presently, numerous clinical applications for human umbilical cord blood inferred stem cells, as stem cell treatment initiate new research. These cells are showing such a boon to stem cell treatment; it is nevertheless characteristic that the prospect of conservation of umbilical cord blood is gaining impetus. Current research works have demonstrated that about 80 diseases, including cancer, can be treated or relieved utilizing umbilical cord blood stem cells, and every year, many transplants have been effectively done around the world. However, in terms of factors, including patient selection, cell preparation, dosing, and delivery process, the treatment procedure for therapy with minimally manipulated stem cells can be patented. It is also worth thinking about how this patent could affect cord blood banks. Meanwhile, the utilization of cord blood cells is controversial and adult-derived cells may not be as successful, so numerous clinicians have begun working with stem cells that are acquired from umbilical cord blood. This review epitomizes a change in outlook from what has been completed with umbilical cord blood cell research and cord blood banking on the grounds that cord blood cells do not require much in the method of handling for cryopreservation or for transplantation in regenerative medicine.


Sign in / Sign up

Export Citation Format

Share Document