scholarly journals Ionic liquids modified cobalt/ZSM-5 as a highly efficient catalyst for enhancing the selectivity towards KA oil in the aerobic oxidation of cyclohexane

2019 ◽  
Vol 17 (1) ◽  
pp. 639-646 ◽  
Author(s):  
Yun Hong ◽  
Yanxiong Fang ◽  
Dalei Sun ◽  
Xiantai Zhou

AbstractThe industrial oxidation of cyclohexane is currently performed with very low conversion level, i.e. 4-6% conversion and poor selectivity for cyclohexanone and cyclohexanol (K-A oil), i.e.70-85%, at above 150oC reaction temperature and above 10atm reaction pressure using molecular oxygen oxidant and homogeneous catalyst. Several disadvantages are, however, associated with the process, such as, complex catalyst-product separation, high power input, and low safe operation. Therefore, the oxidation of cyclohexane using heterogeneous catalyst oxygen oxidant from air at mild conditions has received particular attention. Aerobic oxidation of cyclohexane over ionic liquids modified cobalt/ZSM-5 (IL-Co/ZSM-5) in absence of solvents was developed in this article. The prepared catalysts were characterized by XRD, FT-IR, N2 adsorption-desorption, SEM, TEM and XPS analyses. The influence of reaction parameters on the oxidation of cyclohexane was researched, such as the various catalysts, reaction temperature, reaction time, and the reaction pressure, on the process. Highly selective synthesis of KA oil was performed by aerobic oxidation of cyclohexane using ionic liquids modified cobalt/ZSM-5 (IL-Co/ZSM-5) as the catalyst in absence of solvents for the first time. A selectivity of up to 93.6% of KA oil with 9.2% conversion of cyclohexane was produced at 150℃ and 1.5 MPa after 3 h, with about 0.1 mol cyclohexane, C7mimHSO4-Co/ZSM-5 catalyst equal to 6.0 wt%, respectively. The induction period of oxidation was greatly shortened when the ionic liquid was supported on ZSM-5. The catalyst was easy to centrifuge and was reused after five cycles. It was found that both the characterization and performance of the catalysts revealed that both the presence of oxygen vacancies with incorporation of Co ions into the framework of ZSM-5 and the introduction of C7mimHSO4 into the ZSM-5 leads to the both satisfactory selectivity and robust stability of the C7mimHSO4-Co/ZSM-5 heterogeneous catalyst.

2011 ◽  
Vol 17 (2) ◽  
pp. 117-124 ◽  
Author(s):  
B. Singh ◽  
Faizal Bux ◽  
Y.C. Sharma

Biodiesel was developed by transesterification of Madhuca indica oil by homogeneous and heterogeneous catalysis. KOH and CaO were taken as homogeneous and heterogeneous catalyst respectively. It was found that the homogeneous catalyst (KOH) took 1.0 h of reaction time, 6:1 methanol to oil molar ratio, 0.75 wt% of catalyst amount, 55?0.5?C reaction temperature for completion of the reaction. The heterogeneous catalyst (CaO) was found to give optimum yield in 2.5 h of reaction time at 8:1 methanol to oil molar ratio, 2.5 wt% of catalyst amount, at 65?0.5?C. A high yield (95-97%) and conversion (>96.5%) was obtained from both the catalysts. CaO was found to leach to some extent in the reactants and a biodiesel conversion of 27-28% was observed as a result of leaching.


Author(s):  
Chaokun Yang ◽  
Yanglin Chen ◽  
Ye Qu ◽  
Jiaxu Zhang ◽  
Jianmin Sun

The catalyst with activity comparable to homogeneous catalyst and easy separation like heterogeneous catalyst is attractive for applying CO2 cycloaddition in practice. Hence, a series of polymerized bis-imidazolium based ionic...


2017 ◽  
Vol 41 (24) ◽  
pp. 15545-15554 ◽  
Author(s):  
Charu Garkoti ◽  
Javaid Shabir ◽  
Padmini Gupta ◽  
Manisha Sharma ◽  
Subho Mozumdar

Heterogenization of amine functionalized ionic liquid and its application as an efficient and recyclable catalyst.


Sign in / Sign up

Export Citation Format

Share Document