Towards Pressure-Robust Mixed Methods for the Incompressible Navier–Stokes Equations

2018 ◽  
Vol 18 (3) ◽  
pp. 353-372 ◽  
Author(s):  
Naveed Ahmed ◽  
Alexander Linke ◽  
Christian Merdon

AbstractIn this contribution, we review classical mixed methods for the incompressible Navier–Stokes equations that relax the divergence constraint and are discretely inf-sup stable. Though the relaxation of the divergence constraint was claimed to be harmless since the beginning of the 1970s, Poisson locking is just replaced by another more subtle kind of locking phenomenon, which is sometimes called poor mass conservation and led in computational practice to the exclusion of mixed methods with low-order pressure approximations like the Bernardi–Raugel or the Crouzeix–Raviart finite element methods. Indeed, divergence-free mixed methods and classical mixed methods behave qualitatively in a different way: divergence-free mixed methods are pressure-robust, which means that, e.g., their velocity error is independent of the continuous pressure. The lack of pressure robustness in classical mixed methods can be traced back to a consistency error of an appropriately defined discrete Helmholtz projector. Numerical analysis and numerical examples reveal that really locking-free mixed methods must be discretely inf-sup stable and pressure-robust, simultaneously. Further, a recent discovery shows that locking-free, pressure-robust mixed methods do not have to be divergence free. Indeed, relaxing the divergence constraint in the velocity trial functions is harmless, if the relaxation of the divergence constraint in some velocity test functions is repaired, accordingly. Thus, inf-sup stable, pressure-robust mixed methods will potentially allow in future to reduce the approximation order of the discretizations used in computational practice, without compromising the accuracy.

1997 ◽  
Vol 52 (4) ◽  
pp. 358-368 ◽  
Author(s):  
Michio Nishida ◽  
Masashi Matsumotob

Abstract • This paper describes a computational study of the thermal and chemical nonequilibrium occuring in a rapidly expanding flow of high-temperature air transported as a free jet from an orifice into low-density stationary air. Translational, rotational, vibrational and electron temperatures are treated separately, and in particular the vibrational temperatures are individually treated; a multi-vibrational temperature model is adopted. The governing equations are axisymmetric Navier-Stokes equations coupled with species vibrational energy, electron energy and species mass conservation equations. These equations are numerically solved, using the second order upwind TVD scheme of the Harten-Yee type. The calculations were carried out for two different orifice temperatures and also two different orifice diameters to investigate the effects of such parameters on the structure of a nonequilibrium free jet.


2014 ◽  
Vol 670-671 ◽  
pp. 355-364
Author(s):  
Shao Bo Zhang ◽  
Xiao Chun Wang ◽  
Xin Pu Shen

A hydro-thermo-mechanical model was presented for concrete at elevated temperature. Three phases of continuum were adopted in this model: gaseous mixture of water vapor and dry air, liquid water, and solid skeleton of concrete. Mass conservation equations, linear momentum conservation equation, and energy conservation equation were derived on the basis of the macroscopic Navier-Stokes equations for a general continuum, along with assumptions made for the purpose of simplification. Mathematical relationships between selected primary variables and secondary variables were given with existing data from references. Specifications of the constitutive relations were made for the kinetic variables and their conjugate forces.


2007 ◽  
Vol 04 (04) ◽  
pp. 567-601
Author(s):  
JOSE A. LAMAS

An iterative method has been developed for the solution of the Navier–Stokes equations and implemented using finite volumes with co-located variable arrangement. A pressure equation is obtained combining algebraic momentum and mass conservation equations resulting in a self-consistent set of equations. An iterative procedure solves the pressure equation consistently with mass conservation and then updates velocities based on momentum equations without introducing velocity or pressure correction equations. The process is repeated until velocities satisfy both mass and momentum conservation. Tests demonstrate a priori pressure field solution consistent with mass conservation, and solution of hydrostatic problems in one iteration.


2003 ◽  
Vol 70 (1) ◽  
pp. 44-49 ◽  
Author(s):  
V. Sarin ◽  
A. H. Sameh

The paper presents an algebraic scheme to construct hierarchical divergence-free basis for velocity in incompressible fluids. A reduced system of equations is solved in the corresponding subspace by an appropriate iterative method. The basis is constructed from the matrix representing the incompressibility constraints by computing algebraic decompositions of local constraint matrices. A recursive strategy leads to a hierarchical basis with desirable properties such as fast matrix-vector products, a well-conditioned reduced system, and efficient parallelization of the computation. The scheme has been extended to particulate flow problems in which the Navier-Stokes equations for fluid are coupled with equations of motion for rigid particles suspended in the fluid. Experimental results of particulate flow simulations have been reported for the SGI Origin 2000.


Sign in / Sign up

Export Citation Format

Share Document