scholarly journals A construction of complete complex hypersurfaces in the ball with control on the topology

2019 ◽  
Vol 2019 (751) ◽  
pp. 289-308 ◽  
Author(s):  
Antonio Alarcón ◽  
Josip Globevnik ◽  
Francisco J. López

AbstractGiven a closed complex hypersurface {Z\subset\mathbb{C}^{N+1}} ({N\in\mathbb{N}}) and a compact subset {K\subset Z}, we prove the existence of a pseudoconvex Runge domain D in Z such that {K\subset D} and there is a complete proper holomorphic embedding from D into the unit ball of {\mathbb{C}^{N+1}}. For {N=1}, we derive the existence of complete properly embedded complex curves in the unit ball of {\mathbb{C}^{2}}, with arbitrarily prescribed finite topology. In particular, there exist complete proper holomorphic embeddings of the unit disc {\mathbb{D}\subset\mathbb{C}} into the unit ball of {\mathbb{C}^{2}}. These are the first known examples of complete bounded embedded complex hypersurfaces in {\mathbb{C}^{N+1}} with any control on the topology.

Author(s):  
Josip Globevnik

Let be the open unit disc in C. It is proved that a holomorphic embedding f : C2 can grow arbitrarily fast near b. It is also proved that a holomorphic embedding f : C C2 can grow arbitrarily fast near infinity.


Author(s):  
Richard F. Basener

SynopsisLet S be a compact subset of the open unit disc in C. Associate to S the setLet R(X) be the uniform algebra on X generated by the rational functions which are holomorphic near X. It is shown that the spectrum of R(X) is determined in a simple wayby the potential-theoretic properties of S. In particular, the spectrum of R(X) is X if and only if the functions harmonic near S are uniformly dense in the continuous functions on S. Similar results can be obtained for other subsets of C2 constructed from compact subsets of C.


2019 ◽  
Vol 124 (1) ◽  
pp. 81-101
Author(s):  
Manfred Stoll

In the paper we characterize the reproducing kernel $\mathcal {K}_{n,h}$ for the Hardy space $\mathcal {H}^2$ of hyperbolic harmonic functions on the unit ball $\mathbb {B}$ in $\mathbb {R}^n$. Specifically we prove that \[ \mathcal {K}_{n,h}(x,y) = \sum _{\alpha =0}^\infty S_{n,\alpha }(\lvert x\rvert )S_{n,\alpha }(\lvert y\rvert ) Z_\alpha (x,y), \] where the series converges absolutely and uniformly on $K\times \mathbb {B}$ for every compact subset $K$ of $\mathbb {B}$. In the above, $S_{n,\alpha }$ is a hypergeometric function and $Z_\alpha $ is the reproducing kernel of the space of spherical harmonics of degree α. In the paper we prove that \[ 0\le \mathcal K_{n,h}(x,y) \le \frac {C_n}{(1-2\langle x,y\rangle + \lvert x \rvert^2 \lvert y \rvert^2)^{n-1}}, \] where $C_n$ is a constant depending only on $n$. It is known that the diagonal function $\mathcal K_{n,h}(x,x)$ is a radial eigenfunction of the hyperbolic Laplacian $\varDelta_h $ on $\mathbb{B} $ with eigenvalue $\lambda _2 = 8(n-1)^2$. The result for $n=4$ provides motivation that leads to an explicit characterization of all radial eigenfunctions of $\varDelta_h $ on $\mathbb{B} $. Specifically, if $g$ is a radial eigenfunction of $\varDelta_h $ with eigenvalue $\lambda _\alpha = 4(n-1)^2\alpha (\alpha -1)$, then \[ g(r) = g(0) \frac {p_{n,\alpha }(r^2)}{(1-r^2)^{(\alpha -1)(n-1)}}, \] where $p_{n,\alpha }$ is again a hypergeometric function. If α is an integer, then $p_{n,\alpha }(r^2)$ is a polynomial of degree $2(\alpha -1)(n-1)$.


1994 ◽  
Vol 37 (1) ◽  
pp. 47-51 ◽  
Author(s):  
Jyunji Inoue

We construct a non-exposed extreme function f of the unit ball of H1, the classical Hardy space on the unit disc of the plane, which has the property: f(z)/(1−q(z))2 ∉ H1 for any nonconstant inner function q(z). This function constitutes a counterexample to a conjecture in D. Sarason [7].


1981 ◽  
Vol 33 (5) ◽  
pp. 1157-1164 ◽  
Author(s):  
Clinton J. Kolaski

1.1. The isometries of the Hardy spaces Hp(0 < p < ∞, p ≠ 2) of the unit disc were determined by Forelli in [2]. Generalizations to several variables: For the polydisc the isometries of Hp onto itself were characterized by Schneider [9]. For the unit ball the case p > 2 was then done by Forelli [3]; Rudin [8] removed the restriction p > 2 by proving a theorem on equimeasurability. Finally, Koranyi and Vagi [6] noted that the methods developed by Forelli, Rudin and Schneider applied to bounded symmetric domains.In this note it will be shown that their methods also apply to the Bergman spaces over bounded Runge domains. The isometries which are onto are completely characterized; the special cases of the ball and polydisc are particularly nice and are given separately.


2004 ◽  
Vol 47 (1) ◽  
pp. 191-204 ◽  
Author(s):  
E. Malinnikova

AbstractLet $u$ be a solution of a generalized Cauchy–Riemann system in $\mathbb{R}^n$. Suppose that $|u|\le1$ in the unit ball and $|u|\le\varepsilon$ on some closed set $E$. Classical results say that if $E$ is a set of positive Lebesgue measure, then $|u|\le C\varepsilon^\alpha$ on any compact subset of the unit ball. In the present work the same estimate is proved provided that $E$ is a subset of a hyperplane and the (capacitary) dimension of $E$ is greater than $n-2$. The proof gives control of constants $C$ and $\alpha$.AMS 2000 Mathematics subject classification: Primary 31B35. Secondary 35B35; 35J45


1992 ◽  
Vol 45 (1) ◽  
pp. 163-170
Author(s):  
Yasuo Matsugu

Let ϕ be a nonnegative, nondecreasing and nonconstant function defined on [0, ∞) such that Φ(t) = ϕ(et) is a convex function on (-∞, ∞). The Hardy-Orlicz space H (ϕ) is defined to be the class of all those functions f holomorphic in the open unit disc of the complex plane C satisfying The subclass H(ϕ)+ of H(ϕ) is defined to be the class of all those functions f ∈ H(ϕ) satisfying for almost all points eit of the unit circle. In 1990, Z. Jianzhong conjectured that H(ϕ)+ = H(ψ)+ if and only if H(ϕ) = H(ψ). In the present paper we prove that it is true not only on the unit disc of C but also on the unit ball of Cn.


1976 ◽  
Vol 28 (2) ◽  
pp. 334-340 ◽  
Author(s):  
Adam Korányi ◽  
Stephen Vági

The isometries of the Hardy spaces Hv (0 < p < ∞, p ≠ 2) of the unit disc were determined by Forelli in 1964 [3]. For p = 1 the result had been found earlier by deLeeuw, Rudin and Wermer [2]. For several variables the state of affairs at present is this: For the polydisc the isometries of Hp onto itself have been characterized by Schneider [13]. For the unit ball the same result was proved in the case p > 2 by Forelli [4]. Finally in [12] Rudin removed the restriction p > 2 and also established some results about isometries of Hp of the ball and the polydisc into itself.


2019 ◽  
Vol 17 (1) ◽  
pp. 1260-1268
Author(s):  
Miloš Arsenović ◽  
Tanja Jovanović

Abstract The main result of this paper is the embedding $$\begin{array}{} \displaystyle \mathcal{B}^{s,r}_\beta({\it\Omega})\hookrightarrow \mathcal{B}^{s_1,r_1}_{\beta+(n-1)\big(\frac 1s-\frac 1{s_1}\big)}({\it\Omega}), \end{array}$$ 0 < r ≤ r1 ≤ ∞, 0 < s ≤ s1 ≤ ∞, β > –1, of harmonic functions mixed norm spaces on a smoothly bounded domain Ω ⊂ ℝn. We also extend a result on boundedness, in mixed norm, of a maximal function-type operator from the case of the unit disc and the unit ball to general domains in ℝn.


Sign in / Sign up

Export Citation Format

Share Document