scholarly journals Smallest Eigenvalues for a Right Focal Boundary Value Problem

Author(s):  
Paul Eloe ◽  
Jeffrey T. Neugebauer

AbstractWe establish the existence of smallest eigenvalues for the fractional linear boundary value problems

2020 ◽  
Vol 8 (2) ◽  
pp. 127-138
Author(s):  
S. Chuiko ◽  
O. Chuiko ◽  
V. Kuzmina

The study of the differential-algebraic boundary value problems was established in the papers of K. Weierstrass, M.M. Lusin and F.R. Gantmacher. Works of S. Campbell, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko, M.O. Perestyuk, V.P. Yakovets, O.A. Boi- chuk, A. Ilchmann and T. Reis are devoted to the systematic study of differential-algebraic boundary value problems. At the same time, the study of differential-algebraic boundary-value problems is closely related to the study of linear boundary-value problems for ordinary di- fferential equations, initiated in the works of A. Poincare, A.M. Lyapunov, M.M. Krylov, N.N. Bogolyubov, I.G. Malkin, A.D. Myshkis, E.A. Grebenikov, Yu.A. Ryabov, Yu.A. Mitropolsky, I.T. Kiguradze, A.M. Samoilenko, M.O. Perestyuk and O.A. Boichuk. The study of the linear differential-algebraic boundary value problems is connected with numerous applications of corresponding mathematical models in the theory of nonlinear osci- llations, mechanics, biology, radio engineering, the theory of the motion stability. Thus, the actual problem is the transfer of the results obtained in the articles and monographs of S. Campbell, A.M. Samoilenko and O.A. Boichuk on the linear boundary value problems for the integro-differential boundary value problem not solved with respect to the derivative, in parti- cular, finding the necessary and sufficient conditions of the existence of the desired solutions of the linear integro-differential boundary value problem not solved with respect to the derivative. In this article we found the conditions of the existence and constructive scheme for finding the solutions of the linear Noetherian integro-differential boundary value problem not solved with respect to the derivative. The proposed scheme of the research of the nonlinear Noetherian integro-differential boundary value problem not solved with respect to the derivative in the critical case in this article can be transferred to the seminonlinear integro-differential boundary value problem not solved with respect to the derivative.


2009 ◽  
Vol 43 (1) ◽  
pp. 229-242
Author(s):  
Miklós Rontó ◽  
Natalia Shchobak

Abstract We obtain some results concerning the investigation of two-dimensional non-linear boundary value problems of interpolation type. We show that it is useful to reduce the given boundary value problem, using an appropriate substitution, to a parametrized boundary value problem containing some unknown scalar parameter in the boundary conditions. To study the transformed parametrized problem, we use a method which is based upon special types of successive approximations constructed in an analytic form.


The study of differential-algebraic boundary value problems was initiated in the works of K. Weierstrass, N.N. Luzin and F.R. Gantmacher. Systematic study of differential-algebraic boundary value problems is devoted to the work of S. Campbell, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko, M.O. Perestyuk, V.P. Yakovets, O.A. Boichuk, A. Ilchmann and T. Reis. The study of the differential-algebraic boundary value problems is associated with numerous applications of such problems in the theory of nonlinear oscillations, in mechanics, biology, radio engineering, theory of control, theory of motion stability. At the same time, the study of differential algebraic boundary value problems is closely related to the study of boundary value problems for difference equations, initiated in A.A. Markov, S.N. Bernstein, Ya.S. Besikovich, A.O. Gelfond, S.L. Sobolev, V.S. Ryaben'kii, V.B. Demidovich, A. Halanay, G.I. Marchuk, A.A. Samarskii, Yu.A. Mitropolsky, D.I. Martynyuk, G.M. Vayniko, A.M. Samoilenko, O.A. Boichuk and O.M. Stanzhitsky. Study of nonlinear singularly perturbed boundary value problems for difference equations in partial differences is devoted to the work of V.P. Anosov, L.S. Frank, P.E. Sobolevskii, A.L. Skubachevskii and A. Asheraliev. Consequently, the actual problem is the transfer of the results obtained in the articles by S. Campbell, A.M. Samoilenko and O.A. Boichuk on linear boundary value problems for difference-algebraic equations, in particular finding the necessary and sufficient conditions for the existence of the desired solutions, and also the construction of the Green's operator of the Cauchy problem and the generalized Green operator of a linear boundary value problem for a difference-algebraic equation. The solvability conditions are found in the paper, as well as the construction of a generalized Green operator for the Cauchy problem for a difference-algebraic system. The solvability conditions are found, as well as the construction of a generalized Green operator for a linear Noetherian difference-algebraic boundary value problem. An original classification of critical and noncritical cases for linear difference-algebraic boundary value problems is proposed.


The study of differential-algebraic boundary value problems was initiated in the works of K. Weierstrass, N. N. Luzin and F. R. Gantmacher. Systematic study of differential-algebraic boundary value problems is devoted to the work of S. Campbell, Yu. E. Boyarintsev, V. F. Chistyakov, A. M. Samoilenko, M. O. Perestyuk, V. P. Yakovets, O. A. Boichuk, A. Ilchmann and T. Reis. The study of the differential-algebraic boundary value problems is associated with numerous applications of such problems in the theory of nonlinear oscillations, in mechanics, biology, radio engineering, theory of control, theory of motion stability. At the same time, the study of differential algebraic boundary value problems is closely related to the study of boundary value problems for difference equations, initiated in A. A. Markov, S. N. Bernstein, Ya. S. Besikovich, A. O. Gelfond, S. L. Sobolev, V. S. Ryaben’kii, V. B. Demidovich, A. Halanay, G. I. Marchuk, A. A. Samarskii, Yu. A. Mitropolsky, D. I. Martynyuk, G. M. Vayniko, A. M. Samoilenko, O. A. Boichuk and O. M. Standzhitsky. Study of nonlinear singularly perturbed boundary value problems for difference equations in partial differences is devoted to the work of V. P. Anosov, L. S. Frank, P. E. Sobolevskii, A. L. Skubachevskii and A. Asheraliev. Consequently, the actual problem is the transfer of the results obtained in the articles by S. Campbell, A. M. Samoilenko and O. A. Boichuk on linear boundary value problems for difference-algebraic equations, in particular finding the necessary and sufficient conditions for the existence of the desired solutions, and also the construction of the Green’s operator of the Cauchy problem and the generalized Green operator of a linear boundary value problem for a difference-algebraic equation. Thus, the actual problem is the transfer of the results obtained in the articles and monographs of S. Campbell, A. M. Samoilenko and O. A. Boichuk on the linear boundary value problems for the differential-algebraic boundary value problem for a matrix Lyapunov equation, in particular, finding the necessary and sufficient conditions of the existence of the desired solutions of the linear differential-algebraic boundary value problem for a matrix Lyapunov equation. In this article we found the conditions of the existence and constructive scheme for finding the solutions of the linear Noetherian differential-algebraic boundary value problem for a matrix Lyapunov equation. The proposed scheme of the research of the linear differential-algebraic boundary value problem for a matrix Lyapunov equation in the critical case in this article can be transferred to the seminonlinear differential-algebraic boundary value problem for a matrix Lyapunov equation.


Author(s):  
Sergei Chuiko ◽  
Yaroslav Kalinichenko ◽  
Nikita Popov

The original conditions of solvability and the scheme of finding solutions of a linear Noetherian difference-algebraic boundary-value problem are proposed in the article, while the technique of pseudoinversion of matrices by Moore-Penrose is substantially used. The problem posed in the article continues to study the conditions for solvability of linear Noetherian boundary value problems given in the monographs of A.M. Samoilenko, A.V. Azbelev, V.P. Maximov, L.F. Rakhmatullina and A.A. Boichuk. The study of differential-algebraic boundary-value problems is closely related to the investigation of boundary-value problems for difference equations, initiated in the works of A.A. Markov, S.N. Bernstein, Y.S. Bezikovych, O.O. Gelfond, S.L. Sobolev, V.S. Ryabenkyi, V.B. Demidovych, A. Halanai, G.I. Marchuk, A.A. Samarskyi, Yu.A. Mytropolskyi, D.I. Martyniuk, G.M. Vainiko, A.M. Samoilenko and A.A. Boichuk. On the other hand, the study of boundary-value problems for difference equations is related to the study of differential-algebraic boundary-value problems initiated in the papers of K. Weierstrass, N.N. Lusin and F.R. Gantmacher. Systematic study of differential-algebraic boundary value problems is devoted to the works of S. Campbell, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko, N.A. Perestiyk, V.P. Yakovets, A.A. Boichuk, A. Ilchmann and T. Reis. The study of differential-algebraic boundary value problems is also associated with numerous applications of such problems in the theory of nonlinear oscillations, in mechanics, biology, radio engineering, control theory, motion stability theory. The general case of a linear bounded operator corresponding to the homogeneous part of a linear Noetherian difference-algebraic boundary value problem has no inverse is investigated. The generalized Green operator of a linear difference-algebraic boundary value problem is constructed in the article. The relevance of the study of solvability conditions, as well as finding solutions of linear Noetherian difference-algebraic boundary-value problems, is associated with the widespread use of difference-algebraic boundary-value problems obtained by linearizing nonlinear Noetherian boundary-value problems for systems of ordinary differential and difference equations. Solvability conditions are proposed, as well as the scheme of finding solutions of linear Noetherian difference-algebraic boundary value problems are illustrated in detail in the examples.


2020 ◽  
Vol 17 (3) ◽  
pp. 313-324
Author(s):  
Sergii Chuiko ◽  
Ol'ga Nesmelova

The study of the differential-algebraic boundary value problems, traditional for the Kiev school of nonlinear oscillations, founded by academicians M.M. Krylov, M.M. Bogolyubov, Yu.A. Mitropolsky and A.M. Samoilenko. It was founded in the 19th century in the works of G. Kirchhoff and K. Weierstrass and developed in the 20th century by M.M. Luzin, F.R. Gantmacher, A.M. Tikhonov, A. Rutkas, Yu.D. Shlapac, S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko, O.A. Boichuk, V.P. Yacovets, C.W. Gear and others. In the works of S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko and V.P. Yakovets were obtained sufficient conditions for the reducibility of the linear differential-algebraic system to the central canonical form and the structure of the general solution of the degenerate linear system was obtained. Assuming that the conditions for the reducibility of the linear differential-algebraic system to the central canonical form were satisfied, O.A.~Boichuk obtained the necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and constructed a generalized Green operator of this problem. Based on this, later O.A. Boichuk and O.O. Pokutnyi obtained the necessary and sufficient conditions for the solvability of the weakly nonlinear differential algebraic boundary value problem, the linear part of which is a Noetherian differential algebraic boundary value problem. Thus, out of the scope of the research, the cases of dependence of the desired solution on an arbitrary continuous function were left, which are typical for the linear differential-algebraic system. Our article is devoted to the study of just such a case. The article uses the original necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and the construction of the generalized Green operator of this problem, constructed by S.M. Chuiko. Based on this, necessary and sufficient conditions for the solvability of the weakly nonlinear differential-algebraic boundary value problem were obtained. A typical feature of the obtained necessary and sufficient conditions for the solvability of the linear and weakly nonlinear differential-algebraic boundary-value problem is its dependence on the means of fixing of the arbitrary continuous function. An improved classification and a convergent iterative scheme for finding approximations to the solutions of weakly nonlinear differential algebraic boundary value problems was constructed in the article.


2007 ◽  
Vol 14 (4) ◽  
pp. 775-792
Author(s):  
Youyu Wang ◽  
Weigao Ge

Abstract In this paper, we consider the existence of multiple positive solutions for the 2𝑛th order 𝑚-point boundary value problem: where (0,1), 0 < ξ 1 < ξ 2 < ⋯ < ξ 𝑚–2 < 1. Using the Leggett–Williams fixed point theorem, we provide sufficient conditions for the existence of at least three positive solutions to the above boundary value problem. The associated Green's function for the above problem is also given.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Imran Talib ◽  
Thabet Abdeljawad

Abstract Our main concern in this article is to investigate the existence of solution for the boundary-value problem $$\begin{aligned}& (\phi \bigl(x'(t)\bigr)'=g_{1} \bigl(t,x(t),x'(t)\bigr),\quad \forall t\in [0,1], \\& \Upsilon _{1}\bigl(x(0),x(1),x'(0)\bigr)=0, \\& \Upsilon _{2}\bigl(x(0),x(1),x'(1)\bigr)=0, \end{aligned}$$ ( ϕ ( x ′ ( t ) ) ′ = g 1 ( t , x ( t ) , x ′ ( t ) ) , ∀ t ∈ [ 0 , 1 ] , ϒ 1 ( x ( 0 ) , x ( 1 ) , x ′ ( 0 ) ) = 0 , ϒ 2 ( x ( 0 ) , x ( 1 ) , x ′ ( 1 ) ) = 0 , where $g_{1}:[0,1]\times \mathbb{R}^{2}\rightarrow \mathbb{R}$ g 1 : [ 0 , 1 ] × R 2 → R is an $L^{1}$ L 1 -Carathéodory function, $\Upsilon _{i}:\mathbb{R}^{3}\rightarrow \mathbb{R} $ ϒ i : R 3 → R are continuous functions, $i=1,2$ i = 1 , 2 , and $\phi :(-a,a)\rightarrow \mathbb{R}$ ϕ : ( − a , a ) → R is an increasing homeomorphism such that $\phi (0)=0$ ϕ ( 0 ) = 0 , for $0< a< \infty $ 0 < a < ∞ . We obtain the solvability results by imposing some new conditions on the boundary functions. The new conditions allow us to ensure the existence of at least one solution in the sector defined by well ordered functions. These ordered functions do not require one to check the definitions of lower and upper solutions. Moreover, the monotonicity assumptions on the arguments of boundary functions are not required in our case. An application is considered to ensure the applicability of our results.


Sign in / Sign up

Export Citation Format

Share Document