scholarly journals Parabolic conformally symplectic structures I; definition and distinguished connections

2018 ◽  
Vol 30 (3) ◽  
pp. 733-751 ◽  
Author(s):  
Andreas Čap ◽  
Tomáš Salač

AbstractWe introduce a class of first order G-structures, each of which has an underlying almost conformally symplectic structure. There is one such structure for each real simple Lie algebra which is not of type {C_{n}} and admits a contact grading. We show that a structure of each of these types on a smooth manifold M determines a canonical compatible linear connection on the tangent bundle {\mathrm{TM}}. This connection is characterized by a normalization condition on its torsion. The algebraic background for this result is proved using Kostant’s theorem on Lie algebra cohomology. For each type, we give an explicit description of both the geometric structure and the normalization condition. In particular, the torsion of the canonical connection naturally splits into two components, one of which is exactly the obstruction to the underlying structure being conformally symplectic. This article is the first in a series aiming at a construction of differential complexes naturally associated to these geometric structures.

Author(s):  
M. Crampin

A linear connection on a differentiable manifold M defines a horizontal distribution on the tangent bundle T(M). Horizontal distributions on tangent bundles are of some interest even when they are not generated by connections. Much of linear connection theory generalizes to arbitrary horizontal distributions. In particular, there are generalized versions of Bianchi's two identities for the torsion T and curvature Rwhere C denotes the cyclic sum with respect to X, Y and Z. These identities are derived below by associating with a horizontal distribution a graded derivation of degree 1 in a graded Lie algebra of vertical forms on M. This approach reveals the fundamentally algebraic origin of the Bianchi identities.


2016 ◽  
Vol 25 (12) ◽  
pp. 1642008
Author(s):  
Nikita Markarian

Given a Lie algebra with a scalar product, one may consider the latter as a symplectic structure on a [Formula: see text]-scheme, which is the spectrum of the Chevalley–Eilenberg algebra. In Sec. 1 we explicitly calculate the first-order deformation of the differential on the Hochschild complex of the Chevalley–Eilenberg algebra. The answer contains the Duflo character. This calculation is used in the last section. There we sketch the definition of the Wilson loop invariant of knots, which is, hopefully, equal to the Kontsevich integral, and show that for unknot they coincide. As a byproduct, we get a new proof of the Duflo isomorphism for a Lie algebra with a scalar product.


2016 ◽  
Vol 25 (04) ◽  
pp. 1630011 ◽  
Author(s):  
Alejandro Corichi ◽  
Irais Rubalcava-García ◽  
Tatjana Vukašinac

In this review, we consider first-order gravity in four dimensions. In particular, we focus our attention in formulations where the fundamental variables are a tetrad [Formula: see text] and a [Formula: see text] connection [Formula: see text]. We study the most general action principle compatible with diffeomorphism invariance. This implies, in particular, considering besides the standard Einstein–Hilbert–Palatini term, other terms that either do not change the equations of motion, or are topological in nature. Having a well defined action principle sometimes involves the need for additional boundary terms, whose detailed form may depend on the particular boundary conditions at hand. In this work, we consider spacetimes that include a boundary at infinity, satisfying asymptotically flat boundary conditions and/or an internal boundary satisfying isolated horizons boundary conditions. We focus on the covariant Hamiltonian formalism where the phase space [Formula: see text] is given by solutions to the equations of motion. For each of the possible terms contributing to the action, we consider the well-posedness of the action, its finiteness, the contribution to the symplectic structure, and the Hamiltonian and Noether charges. For the chosen boundary conditions, standard boundary terms warrant a well posed theory. Furthermore, the boundary and topological terms do not contribute to the symplectic structure, nor the Hamiltonian conserved charges. The Noether conserved charges, on the other hand, do depend on such additional terms. The aim of this manuscript is to present a comprehensive and self-contained treatment of the subject, so the style is somewhat pedagogical. Furthermore, along the way, we point out and clarify some issues that have not been clearly understood in the literature.


2018 ◽  
Vol 83 (3) ◽  
pp. 1204-1216 ◽  
Author(s):  
OLGA KHARLAMPOVICH ◽  
ALEXEI MYASNIKOV

AbstractLet R be a commutative integral unital domain and L a free noncommutative Lie algebra over R. In this article we show that the ring R and its action on L are 0-interpretable in L, viewed as a ring with the standard ring language $+ , \cdot ,0$. Furthermore, if R has characteristic zero then we prove that the elementary theory $Th\left( L \right)$ of L in the standard ring language is undecidable. To do so we show that the arithmetic ${\Bbb N} = \langle {\Bbb N}, + , \cdot ,0\rangle $ is 0-interpretable in L. This implies that the theory of $Th\left( L \right)$ has the independence property. These results answer some old questions on model theory of free Lie algebras.


Sign in / Sign up

Export Citation Format

Share Document