scholarly journals On the classification of infinite-dimensional irreducible Hermitian-symmetric affine coadjoint orbits

2009 ◽  
Vol 21 (3) ◽  
Author(s):  
Alice Barbara Tumpach
2018 ◽  
Vol 2019 (15) ◽  
pp. 4822-4844 ◽  
Author(s):  
Natalia Iyudu ◽  
Agata Smoktunowicz

Abstract Potential algebras feature in the minimal model program and noncommutative resolution of singularities, and the important cases are when they are finite dimensional, or of linear growth. We develop techniques, involving Gröbner basis theory and generalized Golod–Shafarevich-type theorems for potential algebras, to determine finiteness conditions in terms of the potential. We consider two-generated potential algebras. Using Gröbner bases techniques and arguing in terms of associated truncated algebra we prove that they cannot have dimension smaller than 8. This answers a question of Wemyss [21], related to the geometric argument of Toda [17]. We derive from the improved version of the Golod–Shafarevich theorem, that if the potential has only terms of degree 5 or higher, then the potential algebra is infinite dimensional. We prove that potential algebra for any homogeneous potential of degree $n\geqslant 3$ is infinite dimensional. The proof includes a complete classification of all potentials of degree 3. Then we introduce a certain version of Koszul complex, and prove that in the class $\mathcal {P}_{n}$ of potential algebras with homogeneous potential of degree $n+1\geqslant 4$, the minimal Hilbert series is $H_{n}=\frac {1}{1-2t+2t^{n}-t^{n+1}}$, so they are all infinite dimensional. Moreover, growth could be polynomial (but nonlinear) for the potential of degree 4, and is always exponential for potential of degree starting from 5. For one particular type of potential we prove a conjecture by Wemyss, which relates the difference of dimensions of potential algebra and its abelianization with Gopakumar–Vafa invariants.


1990 ◽  
Vol 05 (20) ◽  
pp. 3943-3983 ◽  
Author(s):  
GUSTAV W. DELIUS ◽  
PETER VAN NIEUWENHUIZEN ◽  
V. G. J. RODGERS

The method of coadjoint orbits produces for any infinite dimensional Lie (super) algebra A with nontrivial central charge an action for scalar (super) fields which has at least the symmetry A. In this article, we try to make this method accessible to a larger audience by analyzing several examples in more detail than in the literature. After working through the Kac-Moody and Virasoro cases, we apply the method to the super Virasoro algebra and reobtain the supersymmetric extension of Polyakov's local nonpolynomial action for two-dimensional quantum gravity. As in the Virasoro case this action corresponds to the coadjoint orbit of a pure central extension. We further consider the actions corresponding to the other orbits of the super Virasoro algebra. As a new result we construct the actions for the N = 2 super Virasoro algebra.


1982 ◽  
Vol 34 (6) ◽  
pp. 1215-1239 ◽  
Author(s):  
L. J. Santharoubane

Introduction. The natural problem of determining all the Lie algebras of finite dimension was broken in two parts by Levi's theorem:1) the classification of semi-simple Lie algebras (achieved by Killing and Cartan around 1890)2) the classification of solvable Lie algebras (reduced to the classification of nilpotent Lie algebras by Malcev in 1945 (see [10])).The Killing form is identically equal to zero for a nilpotent Lie algebra but it is non-degenerate for a semi-simple Lie algebra. Therefore there was a huge gap between those two extreme cases. But this gap is only illusory because, as we will prove in this work, a large class of nilpotent Lie algebras is closely related to the Kac-Moody Lie algebras. These last algebras could be viewed as infinite dimensional version of the semisimple Lie algebras.


2002 ◽  
Vol 01 (04) ◽  
pp. 425-449
Author(s):  
NICOLETTA CANTARINI

In 1998 Victor Kac classified infinite-dimensional, transitive, irreducible ℤ-graded Lie superalgebras of finite depth. Here we classify bitransitive, irreducible ℤ-graded Lie superalgebras of infinite depth and finite growth which are not contragredient. In particular we show that the growth of every such superalgebra is equal to one.


Sign in / Sign up

Export Citation Format

Share Document