scholarly journals Geometry, kinematics and dynamic characteristics of a compound transfer zone: the Dongying anticline, Bohai Bay Basin, eastern China

2016 ◽  
Vol 8 (1) ◽  
pp. 612-629 ◽  
Author(s):  
Fei Tian ◽  
Jianting Yang ◽  
Ming Cheng ◽  
Yuhong Lei ◽  
Likuan Zhang ◽  
...  

AbstractThe Dongying anticline is an E-W striking complex fault-bounded block unit which located in the central Dongying Depression, Bohai Bay Basin. The anticline covers an area of approximately 12 km2. The overlying succession, which is mainly composed of Tertiary strata, is cut by normal faults with opposing dips. In terms of the general structure, the study area is located in a compound transfer zone with major bounding faults to the west (Ying 1 fault) and east (Ying -8 and -31 faults). Using three-dimensional seismic data, wireline log and checkshot data, the geometries and kinematics of faults in the transfer zone were studied, and fault displacements were calculated. The results show that when activity on the Ying 1 fault diminished, displacement was transferred to the Ying -8, Ying -31 and secondary faults so that total displacement increased. Dynamic analysis shows that the stress fields in the transfer zone were complex: the northern portion was a left-lateral extensional shear zone, and the southern portion was a right-lateral extensional shear zone. A model of potential hydrocarbon traps in the Dongying transfer zone was constructed based on the above data combined with the observed reservoir rock distribution and the sealing characteristics of the faults. The hydrocarbons were mainly expulsed from Minfeng Sag during deposition periods of Neogene Guantao and Minghuazhen Formations, and migrated along major faults from source kitchens to reservoirs. The secondary faults acted as barriers, resulting in the formation of fault-bound compartments. The high points of the anticline and well-sealed traps near secondary faults are potential targets. This paper provides a reservoir formation model of the low-order transfer zone and can be applied to the hydrocarbon exploration in transfer zones, especially the complex fault block oilfields in eastern China.

2021 ◽  
Vol 10 (2) ◽  
pp. 33
Author(s):  
Yujuan Liu ◽  
Qianping Zhang ◽  
Bin Zheng ◽  
Jing Zhang ◽  
Zhaozhao Qu

The reservoir in different parts of buried-hill draping zone is often quite different, so it is of great significance to clarify the reservoir characteristics for exploration and development. Based on core, well logging, seismic data and production data, reservoir characteristics of oil layer Ⅱ in the lower second member of Dongying Formation of L oilfield, Bohai Bay Basin, offshore eastern China are systematically studied. Analyses of seismic facies, well-seismic combination, paleogeomorphology, and sedimentary characteristics are carried out. Sediment source supply, lake level and buried hill basement geomorphology all contribute to reservoir quality. The research suggests that the different parts of buried-hill draping zone can be divided into four types. Reservoir thickness and physical properties vary. The area where the provenance direction is consistent with the ancient valley direction is a favorable location for the development of high-quality reservoirs. Under the guidance of the results, oilfield production practices in L oilfield offshore China are successful. Knowledge gained from study of L oilfield has application to the development of other similar fields.


2021 ◽  
pp. 1-65
Author(s):  
Tianxia An ◽  
Bingsong Yu ◽  
Yongshi Wang ◽  
Zhuang Ruan ◽  
Wei Meng ◽  
...  

The faulted lacustrine Bohai Basin in eastern China contains abundant hydrocarbon resources. In these reservoirs, understanding the sandstone diagenesis and the resulting formation water provides a means to unravel the evolution processes in the basin. In most cases, the lack of isotopic and trace element analysis tests in this type of basin limits the research on the origin and evolution of formation water in this area. We have used multivariate statistical methods to classify the geochemical characteristics of the formation water for the Cenozoic Formation of Bonan Sag in the Bohai Bay Basin. Analysis of correlations among the evolution processes of different ions in different types of formation water provides an understanding of the primary factors influencing the ion content. We also evaluate the water-rock interactions of different types of formation water to evaluate their geologic significance, and we find three types. Type I formation water includes a mixture of river water, lake water, and atmospheric precipitation and exhibits weak water-rock interactions. Type II formation water contains primitive freshwater and brackish lake water that has undergone an evolution process similar to that of type I formation water, but that was followed by evaporation and concentration, the dissolution and precipitation of calcite and iron calcite, and feldspar dissolution. Type III formation water, which is a product of rock reconstruction, originates from saline lake sediment water. After undergoing evolution processes similar to those of types I and II, type III formation water is also affected by dissolution of evaporite, albite, dolomite, and iron dolomite. Thus, type III formation water is the product of water-rock interactions such as precipitation, SO42− reduction, and pyrite precipitation in which the water-rock reaction controls the development mechanism and characteristics of the reservoir space.


2019 ◽  
Vol 17 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Ji-Chang Zhu ◽  
Cai-Neng Zou ◽  
You-Liang Feng ◽  
Shu Jiang ◽  
Wei-An Wu ◽  
...  

AbstractThe characteristics of petroliferous plays in subtle traps within a sequence stratigraphic framework in the Dongying Depression are investigated in this study. Sand bodies within lowstand systems tracts (LSTs) of sequences, comprising incised-channel fills, sublacustrine fans, deltas in LSTs, controlled by syndepositional normal faults, and sand bodies within transgressive systems tracts (TSTs) to early highstand systems tracts (HSTs), consisting of beach bars, and turbidites, controlled by the prodelta slope, paleorelief, and syndepositional normal faults, are good subtle reservoirs. Mudstones and shale of deep lake subfacies in TSTs to early HSTs of sequences are source and cap rocks. Abnormal overpressure is the dominant dynamic factor for hydrocarbon migration from source rock to the subtle traps. Normal faults, sand bodies, and unconformities function as conduit systems. Sand bodies distributed in the abnormal overpressure source rocks within LSTs to early HSTs are petroliferous plays in lithologic traps. The petroliferous plays in stratigraphic traps are controlled by unconformities at margins of the Depression.


2019 ◽  
Vol 109 ◽  
pp. 819-838 ◽  
Author(s):  
Rui Zhao ◽  
Si Chen ◽  
Hua Wang ◽  
Huajun Gan ◽  
Guanhong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document