scholarly journals An Albian demise of the carbonate platform in the Manín Unit (Western Carpathians, Slovakia)

2017 ◽  
Vol 68 (5) ◽  
pp. 385-402 ◽  
Author(s):  
Kamil Fekete ◽  
Ján Soták ◽  
Daniela Boorová ◽  
Otília Lintnerová ◽  
Jozef Michalík ◽  
...  

Abstract The production of platform carbonates of the Manín Unit (Manín Straits, Central Western Carpathians) belonging to the Podhorie and Manín formations and formed by remains of rudists and benthic foraminifers (Urgonian-type carbonates), was previously assumed to terminate during the Aptian. First, we show that these deposits were primarily formed on the upper slope (Podhorie Formation) and in a fore-reef environment (Manín Formation). Second, biostratigraphic data indicate that the shallow-water production persisted up to the Albian, just as it did in another succession of the Manín Unit. The Podhorie Fm contains colomiellids (Colomiella recta, C. mexicana) and calcareous dinoflagellates (Calcisphaerula innominata) that indicate the Albian age. It also contains planktonic foraminifers (Ticinella roberti, Ticinella cf. primula, Ticinella cf. madecassiana, Ticinella cf. praeticinensis) of the Albian Ticinella primula Zone. The Podhorie Formation passes upwards into peri-reefal facies of the Manín Fm where we designate the Malý Manín Member on the basis of rudists shell fragments and redeposited orbitolinids. Microfacies associations share similarities with the Urgonian-type microfacies from Mediterranean Tethys and allow us to restrict the growth and the demise of the carbonate platform. δ13C and δ18O isotopes change over a broad range of both formations: δ13C is in the range +1.03 to +4.20 ‰ V-PDB and δ18O is in the range −0.14 to −5.55 ‰ V-PDB. Although a close correlation between δ13C and δ18O indicates diagenetic overprint, a long-term increase of δ13C can indicate a gradual increase in the aragonite production and/or increasing effects of oceanic water masses in the course of the Albian, prior to the final platform drowning. Carbonate platform evolution was connected with submarine slumps and debris flows leading to redeposition and accumulation of carbonate lithoclasts and bioclastic debris on the slope. Our study confirms that the growth of carbonate platforms in the Central Western Carpathians was stopped and the platform collapsed during the Albian, in contrast to the westernmost Tethys. A hardground formed during the Late Albian is overlain by Albian - Cenomanian marls of the Butkov Formation with calcisphaerulid limestones characterized by planktonic foraminifers of the Parathalmanninella appenninica Zone and calcareous dinoflagellates of the Innominata Acme Zone.

2018 ◽  
Vol 69 (1) ◽  
pp. 3-16 ◽  
Author(s):  
Andrej Čerňanský ◽  
Nicole Klein ◽  
Ján Soták ◽  
Mário Olšavský ◽  
Juraj Šurka ◽  
...  

AbstractAn eosauropterygian skeleton found in the Middle Triassic (upper Anisian) Gutenstein Formation of the Fatric Unit (Demänovská dolina Valley, Low Tatra Mountains, Slovakia) represents the earliest known occurrence of marine tetrapods in the Western Carpathians. The specimen represents a partly articulated portion of the postcranial skeleton (nine dorsal vertebrae, coracoid, ribs, gastral ribs, pelvic girdle, femur and one zeugopodial element). It is assigned to the Pachypleurosauria, more precisely to theSerpianosaurus–Neusticosaurusclade based on the following combination of features: (1) small body size; (2) morphology of vertebrae, ribs and femur; (3) tripartite gastral ribs; and (4) microanatomy of the femur as revealed by μCT. Members of this clade were described from the epicontinental Germanic Basin and the Alpine Triassic (now southern Germany, Switzerland, Italy), and possibly from Spain. This finding shows that pachypleurosaur reptiles attained a broader geographical distribution during the Middle Triassic, with their geographical range reaching to the Central Western Carpathians. Pachypleurosaurs are often found in sediments formed in shallow, hypersaline carbonate-platform environments. The specimen found here occurs in a succession with vermicular limestones in a shallow subtidal zone and stromatolitic limestones in a peritidal zone, indicating that pachypleurosaurs inhabited hypersaline, restricted carbonate ramps in the Western Carpathians.


2020 ◽  
Vol 90 (9) ◽  
pp. 1156-1174 ◽  
Author(s):  
Catherine Breislin ◽  
Stephen Crowley ◽  
Vanessa J. Banks ◽  
Jim D. Marshall ◽  
Ian L. Millar ◽  
...  

ABSTRACT Fault-controlled dolomitization has been documented in Lower Carboniferous (Viséan) platform carbonates at various localities in the Pennine Basin and North Wales. The largest of these dolomite bodies (approx. 60 km2) occurs on the Derbyshire Platform, on the southern margin of the Pennine Basin. This study tests the hypothesis that dolomitization occurred at this locality during deposition, platform drowning, and the earliest stages of burial, coincident with the transition from a late syn-rift to post-rift regime. It also assesses the importance of syn-rift volcanism on dolomitization. Planar, fabric-retentive dolomite with single-phase (i.e., low temperature) fluid inclusions occurs along NW–SE and E–W oriented faults, and in platform margin facies and in proximity to the Masson Hill Volcanic Complex. Oxygen isotope data are consistent with dolomitization from seawater, but slightly depleted δ13C values reflect mixing with magmatic fluids. Volcanic activity is likely to have produced a thermal drive for fluid circulation on the platform margin, and post-depositional alteration of basalts by CO2-rich fluids could have led to alteration of olivine and release of magnesium to convecting seawater. Consequently, the large volume of dolostone on the southern margin of the Derbyshire Platform is attributed to the increased geothermal gradient and a localized increase in the Mg/Ca ratio of dolomitizing fluids at this locality, compared to elsewhere in the Pennine Basin. The results suggest that syn-rift carbonate platforms in volcanically active areas of rift basins have a greater potential for dolomitization from seawater than non-volcanic platforms in the same basin.


1988 ◽  
Vol 25 (5) ◽  
pp. 639-656 ◽  
Author(s):  
Constance M. Soja

Facies representing shallow subtidal conditions, an open lagoon or shelf, offshore biostromal banks, and a restricted lagoon or shelf form the Lower Devonian (Emsian) sequence of rocks exposed on Kasaan Island in southeastern Alaska. This complex of carbonate environments developed in an island arc, which is now preserved within the accretionary Alexander Terrane. The lower part of the platform sequence represents the restricted shallow subtidal zone and consists of rhyolitic tuffs and lime mud-stones and wackestones containing low-diversity assemblages of leperditiid ostracodes and loxonematid-like gastropods. Following the end of volcanic activity, dendritic corals and branching stromatoporoids colonized the outer, deeper portions of the subtidal zone. Higher in the sequence, boundstones consisting of massive stromatoporoids are associated with brachiopod packstones that together represent the growth of biostromal colonies at the seaward edge of the platform and the diversification of normal marine biota within a lagoon or shelf. Restricted circulation eventually developed across vast portions of the lagoon or shelf, which resulted in the expansive growth of Amphipora and the decline in all other invertebrate populations.The sequence preserved in the rocks on Kasaan Island records a period of waning volcanic activity within the arc, which is marked by the relatively thick cover of lime sediments that accumulated on an evolving carbonate platform. The apparent lack of coeval limestones that exhibit identical stratigraphic successions in other parts of the Alexander Terrane probably reflects the evolution of isolated carbonate platforms adjacent to submarine or subaerial topographic highs that developed locally within the arc during or before the Early Devonian.


10.1144/sp509 ◽  
2021 ◽  
Vol 509 (1) ◽  
pp. NP-NP
Author(s):  
J. Hendry ◽  
P. Burgess ◽  
D. Hunt ◽  
X. Janson ◽  
V. Zampetti

Modern seismic data have become an essential toolkit for studying carbonate platforms and reservoirs in impressive detail. Whilst driven primarily by oil and gas exploration and development, data sharing and collaboration are delivering fundamental geological knowledge on carbonate systems, revealing platform geomorphologies and how their evolution on millennial time scales, as well as kilometric length scales, was forced by long-term eustatic, oceanographic or tectonic factors. Quantitative interrogation of modern seismic attributes in carbonate reservoirs permits flow units and barriers arising from depositional and diagenetic processes to be imaged and extrapolated between wells.This volume reviews the variety of carbonate platform and reservoir characteristics that can be interpreted from modern seismic data, illustrating the benefits of creative interaction between geophysical and carbonate geological experts at all stages of a seismic campaign. Papers cover carbonate exploration, including the uniquely challenging South Atlantic pre-salt reservoirs, seismic modelling of carbonates, and seismic indicators of fluid flow and diagenesis.


2018 ◽  
Author(s):  
David Patrick Gold ◽  
James P. G. Fenton ◽  
Manuel Casas-Gallego ◽  
Vibor Novak ◽  
Irene Pérez-Rodríguez ◽  
...  

The island of Jamaica forms the northern extent of the Nicaraguan Rise, an elongate linear tectonic feature stretching as far as Honduras and Nicaragua to the south. Uplift and subaerial exposure of Jamaica during the Neogene has made the island rare within the Caribbean region, as it is the only area where rocks of the Nicaraguan Rise are exposed on land. Biostratigraphic dating and palaeoenvironmental interpretations using larger benthic foraminifera, supplemented by planktonic foraminifera, nannopalaeontology and palynology of outcrop, well and corehole samples has enabled the creation of a regional relative sea-level curve through identification of several depositional sequences. This study recognises ten unconformity-bounded transgressive-regressive sequences which record a complete cycle of relative sea level rise and fall. Sequences are recognised in the Early to ‘Middle’ Cretaceous (EKTR1), Coniacian-Santonian (STR1), Campanian (CTR1), Maastrichtian (MTR1-2), Paleocene-Early Eocene (PETR1), Eocene (YTR1-3) and Late Eocene-Oligocene (WTR1). These transgressive-regressive cycles represent second to fourth order sequences, although most tie with globally recognised third order sequences. Comparisons of the Jamaican relative sea-level curve with other published global mean sea-level curves show that local tectonics exerts a strong control on the deposition of sedimentary sequences in Jamaica. Large unconformities (duration >1 Ma) are related to significant regional tectonic events, with minor overprint of a global eustatic signal, while smaller unconformities (duration <1 Ma) are produced by global eustatic trends. The relatively low rates of relative sea-level rise calculated from the regional relative sea-level curve indicate that carbonate production rates were able to keep pace with the rate of relative sea-level rise accounting for the thick successions of Maastrichtian carbonates and those of the Yellow and White Limestone Groups. Carbonate platform drowning within the White Limestone Group during the Oligocene to Miocene is attributed to environmental deterioration given the low rates of relative sea-level rise.


2021 ◽  
pp. SP509-2021-51
Author(s):  
J. Hendry ◽  
P. Burgess ◽  
D. Hunt ◽  
X. Janson ◽  
V. Zampetti

AbstractImproved seismic data quality in the last 10–15 years, innovative use of seismic attribute combinations, extraction of geomorphological data, and new quantitative techniques, have significantly enhanced understanding of ancient carbonate platforms and processes. 3D data have become a fundamental toolkit for mapping carbonate depositional and diagenetic facies and associated flow units and barriers, giving a unique perspective how their relationships changed through time in response to tectonic, oceanographic and climatic forcing. Sophisticated predictions of lithology and porosity are being made from seismic data in reservoirs with good borehole log and core calibration for detailed integration with structural, paleoenvironmental and sequence stratigraphic interpretations. Geologists can now characterise entire carbonate platform systems and their large-scale evolution in time and space, including systems with few outcrop analogues such as the Lower Cretaceous Central Atlantic “Pre-Salt” carbonates. The papers introduced in this review illustrate opportunities, workflows, and potential pitfalls of modern carbonate seismic interpretation. They demonstrate advances in knowledge of carbonate systems achieved when geologists and geophysicists collaborate and innovate to maximise the value of seismic data from acquisition, through processing to interpretation. Future trends and developments, including machine learning and the significance of the energy transition, are briefly discussed.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Rudolph Scherreiks ◽  
Marcelle Boudagher-Fadel

The Pelagonian stratigraphy of the Internal Hellenides consists of a Permo-Triassic basement and an Upper Triassic and Jurassic carbonate platform formation that has been overthrust by the Eohellenic ophiolite sheet during the Early Cretaceous. Intensive erosion, during the Cretaceous, removed most of the ophiolite and parts of the Jurassic formation. It is hypothesised that uplift and erosion of eastern Pelagonia was triggered by the break-off of the subducted oceanic leading edge of the Pelagonian plate. An investigation of the rocks that succeed the erosional unconformity shows that they constitute a shear-zone that is tectonically overlain by Cretaceous platform carbonates. Geochemical analyses of the shear-zone rocks substantiate that they are of mid-oceanic ridge and island arc provenience. Eastern Pelagonia collided with a Cretaceous carbonate platform, probably the Paikon forearc basin, as the Almopias ocean crust subducted beneath that island–arc complex. The Cretaceous platform, together with a substrate of sheared-off ocean floor mélange, overthrust eastern Pelagonia as subduction continued, and the substrate was dynamically metamorphosed into cataclastic rocks, mylonite, phyllonite and interpreted pseudotachylite. This complex of Cretaceous platform rocks and a brittle-ductile shear-zone-substrate constitute the here named Paikon–Palouki nappe, which was emplaced during Early Palaeocene. The Paikon–Palouki nappe did not reach Evvoia. Seismic tomographic models of the Aegean region apparently depict images of two broken-off ocean-plate-slabs, interpreted as Almopias-lithosphere-slabs. It is concluded that the western Almopias slab began to sink during the Early Cretaceous, while the eastern Almopias slab broke off and sank after the Paikon–Palouki nappe was emplaced in the Early Palaeocene.


Sign in / Sign up

Export Citation Format

Share Document