Notes on quasi-Frobenius rings

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhanmin Zhu

Abstract We give some new characterizations of quasi-Frobenius rings. Namely, we prove that for a ring R, the following statements are equivalent: (1) R is a quasi-Frobenius ring, (2) {M_{2}(R)} is right Johns and every closed left ideal of R is cyclic, (3) R is a left 2-simple injective left Kasch ring with ACC on left annihilators, (4) R is a left 2-injective semilocal ring such that {R/S_{l}} is left Goldie, (5) R is a right YJ-injective right minannihilator ring with ACC on right annihilators.

2006 ◽  
Vol 05 (06) ◽  
pp. 799-815 ◽  
Author(s):  
MARCUS GREFERATH ◽  
GARY McGUIRE ◽  
MICHAEL E. O'SULLIVAN

We study the Plotkin bound for codes over a finite Frobenius ring R equipped with the homogeneous weight. We show that for codes meeting the Plotkin bound, the distribution on R induced by projection onto a coordinate has an interesting property. We present several constructions of codes meeting the Plotkin bound and of Plotkin-optimal codes. We also investigate the relationship between Butson–Hadamard matrices and codes over R meeting the Plotkin bound.


2006 ◽  
Vol 05 (06) ◽  
pp. 847-854 ◽  
Author(s):  
CARL FAITH

If R is right pseudo-Frobenius (= PF), and A is an ideal, when is R/A right PF? Our main result, Theorem 3.7, states that this happens iff the ideal A′ of the basic ring B of R corresponding to A has left annihilator F in B generated by a single element on both sides. Moreover, in this case B/A′ ≈ F in mod-B, (see Theorem 3.5), a property that does not extend to R, that is, in general R/A is not isomorphic to the left annihilator of A. (See Example 4.3(2) and Theorem 4.5.) Theorem 4.6 characterizes Frobenius rings among quasi-Frobenius (QF) rings. As an application of the main theorem, in Theorem 3.9 we prove that if A is generated as a right or left ideal by an idempotent e, then e is central (and R/A is then trivially right PF along with R). This generalizes the result of F. W. Anderson for quasi-Frobenius rings. (See Theorem 2.2 for a new proof.). In Proposition 1.6, we prove that a generalization of this result holds for finite products R of full matrix rings over local rings; namely, an ideal A is finitely generated as a right or left ideal iff A is generated by a central idempotent. We also note a theorem going back to Nakayama, Goursaud, and the author that every factor ring of R is right PF iff R is a uniserial ring. (See Theorem 5.1.).


1966 ◽  
Vol 18 ◽  
pp. 1148-1151 ◽  
Author(s):  
Ling-Erl E. T. Wu

A quasi-Frobenius ring is a ring with minimum condition satisfying the conditions r(l)H)) = H and l(r(L)) = L for right ideals H and left ideals L where r(S) (l(S)) denotes the right (left) annihilator of a subset S of the ring. Nakayama first defined and studied such rings (8; 9) and they have been studied by a number of authors (2; 3; 4; 6). A dual ring is a topological ring satisfying the conditions r(l)H)) = H and l(r)H)) = L for closed right ideals H and closed left ideals L. Baer (1) and Kaplansky (7) introduced the notion of such rings, which is a natural generalization of that of quaso-Frobenius rings. Numakura studied the analogy between dual rings and quasi-Frobenius rings in (10).


1974 ◽  
Vol 26 (5) ◽  
pp. 1141-1151 ◽  
Author(s):  
Bruno J. Müller

Utilizing a matrix representation of semiperfect rings by a family of bimodules over local rings, we describe the structure of generalized quasi-Frobenius rings in two steps: a cyclic generalized quasi-Frobenius ring is a matrix ring over a cycle of Morita dualities between local rings, and an arbitrary generalized quasi-Frobenius ring is a matrix ring over a family of cyclic generalized quasi-Frobenius rings.Our results provide a complete classification of generalized quasi-Frobenius rings, modulo the classification of local rings with Morita duality, of certain bimodules over such rings, and of certain rest families of multiplication maps.


2018 ◽  
Vol 17 (04) ◽  
pp. 1850075 ◽  
Author(s):  
M. Alkan ◽  
W. K. Nicholson ◽  
A. Ç. Özcan

A ring [Formula: see text] is called left comorphic if, for each [Formula: see text] there exists [Formula: see text] such that [Formula: see text] and [Formula: see text] Examples include (von Neumann) regular rings, and [Formula: see text] for a prime [Formula: see text] and [Formula: see text] One motivation for studying these rings is that the comorphic rings (left and right) are just the quasi-morphic rings, where [Formula: see text] is left quasi-morphic if, for each [Formula: see text] there exist [Formula: see text] and [Formula: see text] in [Formula: see text] such that [Formula: see text] and [Formula: see text] If [Formula: see text] here the ring is called left morphic. It is shown that [Formula: see text] is left comorphic if and only if, for any finitely generated left ideal [Formula: see text] there exists [Formula: see text] such that [Formula: see text] and [Formula: see text] Using this, we characterize when a left comorphic ring has various properties, and show that if [Formula: see text] is local with nilpotent radical, then [Formula: see text] is left comorphic if and only if it is right comorphic. We also show that a semiprime left comorphic ring [Formula: see text] is semisimple if either [Formula: see text] is left perfect or [Formula: see text] has the ACC on [Formula: see text] After a preliminary study of left comorphic rings with the ACC on [Formula: see text] we show that a quasi-Frobenius ring is left comorphic if and only if every right ideal is principal; if and only if every left ideal is a left principal annihilator. We characterize these rings as follows: The following are equivalent for a ring [Formula: see text] [Formula: see text] is quasi-Frobenius and left comorphic. [Formula: see text] is left comorphic, left perfect and right Kasch. [Formula: see text] is left comorphic, right Kasch, with the ACC on [Formula: see text] [Formula: see text] is left comorphic, left mininjective, with the ACC on [Formula: see text] Some examples of these rings are given.


1972 ◽  
Vol 13 (1) ◽  
pp. 56-60 ◽  
Author(s):  
B. J. Tomiuk

Ogasawara and Yoshinaga [9] have shown that aB*-algebra is weakly completely continuous (w.c.c.) if and only if it is*-isomorphic to theB*(∞)-sum of algebrasLC(HX), where eachLC(HX)is the algebra of all compact linear operators on the Hilbert spaceHx.As Kaplansky [5] has shown that aB*-algebra isB*-isomorphic to theB*(∞)-sum of algebrasLC(HX)if and only if it is dual, it follows that a5*-algebraAis w.c.c. if and only if it is dual. We have observed that, if only certain key elements of aB*-algebraAare w.c.c, thenAis already dual. This observation constitutes our main theorem which goes as follows.A B*-algebraAis dual if and only if for every maximal modular left idealMthere exists aright identity modulo M that isw.c.c.


1973 ◽  
Vol 14 (2) ◽  
pp. 136-144
Author(s):  
M. S. Vijayakumar

This paper establishes a relationship (Theorem 4.1) between the approaches of A. C. Thompson [8, 9] and E. G. Effros [2] to the representation of simplex algebras, that is, real unital Banach algebras that are simplex spaces with the unit for order identity. It proves that the (nonempty) interior of the associated cone is contained in the principal component of the set of all regular elements of the algebra. It also conjectures that each maximal ideal (in the order sense—see below) of a simplex algebra contains a maximal left ideal of the algebra. This conjecture and other aspects of the relationship are illustrated by considering algebras of n × n real matrices.


2010 ◽  
Vol 57 (2) ◽  
pp. 169-179 ◽  
Author(s):  
Eimear Byrne ◽  
Marcus Greferath ◽  
Axel Kohnert ◽  
Vitaly Skachek

2018 ◽  
Vol 61 (1) ◽  
pp. 130-141
Author(s):  
Tamer Košan ◽  
Serap Sahinkaya ◽  
Yiqiang Zhou

AbstractLet R be a ring. A map f: R → R is additive if f(a + b) = f(a) + f(b) for all elements a and b of R. Here, a map f: R → R is called unit-additive if f(u + v) = f(u) + f(v) for all units u and v of R. Motivated by a recent result of Xu, Pei and Yi showing that, for any field F, every unit-additive map of (F) is additive for all n ≥ z, this paper is about the question of when every unit-additivemap of a ring is additive. It is proved that every unit-additivemap of a semilocal ring R is additive if and only if either R has no homomorphic image isomorphic to or R/J(R) ≅ with 2 = 0 in R. Consequently, for any semilocal ring R, every unit-additive map of (R) is additive for all n ≥ 2. These results are further extended to rings R such that R/J(R) is a direct product of exchange rings with primitive factors Artinian. A unit-additive map f of a ring R is called unithomomorphic if f(uv) = f(u)f(v) for all units u, v of R. As an application, the question of when every unit-homomorphic map of a ring is an endomorphism is addressed.


Sign in / Sign up

Export Citation Format

Share Document