Agricultural utilization of lignosulfonates

Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Gerhild K. Wurzer ◽  
Hubert Hettegger ◽  
Robert H. Bischof ◽  
Karin Fackler ◽  
Antje Potthast ◽  
...  

Abstract Lignosulfonates (LSs) are by-products of the pulp and paper industry from pulping of lignocellulosic biomass according to the sulfite process. This renewable material already plays a role in low-value applications, such as binding agents for fuel, pellets, as a feed additive, or as a dispersant. Another possible field of application of this technical lignin type is agriculture. It is known that this eco-friendly and cheap material can improve soil quality, fertilizer efficacy and replace or decrease the use of potentially (eco)toxic organic or inorganic substances. The use of LS in agriculture and five main strategies for the implementation of LS in soil are discussed in this review: LS as a complexing agent with micronutrients, co-pelleting of LS with (macro)nutrients, capsule formation with LS for coating of fertilizers or pesticides, LS as a biostimulant, and ammonoxidation of LS. All five ways can be beneficial in fertilizer-related applications, either to slow down the release of nutrients or pesticides, to substitute harmful chemicals, or to inhibit nitrification and modify fertilizer behaviour. Nevertheless, application and long-time studies are often missing, and more research is required for generating products that are economically competitive to commercial bulk products.

2007 ◽  
Vol 10 (3) ◽  
pp. 0-0 ◽  
Author(s):  
Ana Maria Rebelo Barreto Xavier ◽  
Ana Paula Mora Tavares ◽  
Rita Ferreira ◽  
Francisco Amado

2020 ◽  
Vol 6 (4) ◽  
pp. 185
Author(s):  
Tero Leppänen ◽  
Erno Mustonen ◽  
Henri Saarela ◽  
Matti Kuokkanen ◽  
Pekka Tervonen

The increasing pressure on natural resources and the climate has been noted by businesses and governments worldwide, who now face the difficult task of integrating paths of environmental sustainability and economic growth. One promising approach to sustainable development, reducing the pressure on natural resources and solving waste problems is circular economy. From different ways of implementing circular economy, this study focuses on the productization of industrial side streams, which carry a great deal of underutilized potential. In this article, the productization of pulp and paper industry side stream, fiber sludge, for commercial use as a dust-binding agent is studied via a descriptive, in-depth case study. Apart from inconsistent quality, fluctuating supply, cost of storage and logistics, what makes industrial side stream utilization challenging is the lack of knowledge that stakeholders have about side streams and their utilization and the lack of new value chain development for their commercial use. Therefore, it is essential for all parties involved to have a clearer vision of what is being sold for what purposes, through productization. This study found that the productization of side streams follows the same steps as the productization of any other traditional product, and the productized side streams can be added to the company’s product portfolio as by-products.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3825
Author(s):  
João A. Pinto ◽  
Isabel P. Fernandes ◽  
Virginia D. Pinto ◽  
Elson Gomes ◽  
Cátia F. Oliveira ◽  
...  

Valorization of industrial low-value side-streams are of great interest, contributing to boosts in the circular economy. In this context, lignin side-streams of the pulp and paper industry were oxypropylated to produce biobased polyols and tested in the synthesis of rigid polyurethane (RPU) foams. E. globulus lignins, namely a lignin isolated from an industrial Kraft black liquor and depolymerized lignins obtained as by-products of an oxidation process, were used. RPU foams, synthesized with 100% lignin-based polyols and using a 1.1 NCO/OH ratio, were characterized concerning apparent density, morphology, thermal conductivity, thermal stability, and heat release rate (HRR). Foams containing the lignin-based polyols presented densities varying from 44.7 to 112.2 kg/m3 and thermal conductivity in the range of 37.2–49.0 mW/mK. For the reference foam (sample produced with 100% wt. Daltofoam TP 32015 polyol), values of 70.9 kg/m3 and 41.1 mW/mK were obtained, respectively. The achieved results point out the viability of using the generated lignin-based polyols at 100% content in RPU foams, mainly when depolymerized lignins are used. Moreover, fire retardancy was favored when the lignin-based polyols were introduced. The proposed strategies can contribute to establishing the integrated pulp and paper biorefinery concept where material synthesis (polyols and RPU foams) can be combined with chemical production (vanillin and syringaldehyde).


TAPPI Journal ◽  
2014 ◽  
Vol 13 (6) ◽  
pp. 19-24
Author(s):  
TROY RUNGE ◽  
CHUNHUI ZHANG

Agricultural residues and energy crops are promising resources that can be utilized in the pulp and paper industry. This study examines the potential of co-cooking nonwood materials with hardwoods as means to incorporate nonwood material into a paper furnish. Specifically, miscanthus, switchgrass, and corn stover were substituted for poplar hardwood chips in the amounts of 10 wt %, 20 wt %, and 30 wt %, and the blends were subjected to kraft pulping experiments. The pulps were then bleached with an OD(EP)D sequence and then refined and formed into handsheets to characterize their physical properties. Surprisingly, all three co-cooked pulps showed improved strength properties (up to 35%). Sugar measurement of the pulps by high-performance liquid chromatography suggested that the strength increase correlated with enriched xylan content.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (11) ◽  
pp. 611-617
Author(s):  
Sabrina Burkhardt

The traditional kappa number method was developed in 1960 as a way to more quickly determine the level of lignin remaining in a completed or in-progress pulp. A significantly faster approach than the Klason lignin procedure, the kappa number method is based on the reaction of a strong oxidizing agent (KMnO4) with lignin and small amounts of other organic functional groups present in the pulp, such as hexenuronic acid. While the usefulness of the kappa number for providing information about bleaching requirements and pulp properties has arguably transformed the pulp and paper industry, it has been mostly developed for kraft, sulfite, and soda wood pulps. Nonwood species have a different chemical makeup than hardwood or softwood sources. These chemical differ-ences can influence kappa and Klason measurements on the pulp and lead to wide ranges of error. Both original data from Sustainable Fiber Technologies’ sulfur and chlorine-free pulping process and kappa and Klason data from various nonwood pulp literature sources will be presented to challenge the assumption that the kappa number accurately represents lignin content in nonwood pulps.


1999 ◽  
Vol 53 (10) ◽  
pp. 1334-1338 ◽  
Author(s):  
Yoshiya Kuide ◽  
Kazuyoshi Yamamoto

Sign in / Sign up

Export Citation Format

Share Document