side stream
Recently Published Documents


TOTAL DOCUMENTS

444
(FIVE YEARS 156)

H-INDEX

30
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Svetlana Butylina ◽  
Krista Koljonen ◽  
Salla Hiltunen ◽  
Katri Laatikainen

Abstract Valorisation of bio-based materials derived from agricultural and industrial side-streams or waste-streams is a basis of circular economy. However, the success of it depends on the full understanding of materials and finding their optimal way of processing. Barley husk is a side-stream waste material derived from the starch and ethanol production. This study is focused on the processability of the arabinoxylan extracted from barley husk using the electrospinning technique to produce thin xylan-poly(vinyl alcohol) fibers. As a comparison, lignin-free xylan of beech wood was used. The properties of spinning solutions and resulting nanofibrous mats were assessed by using rheological measurements, FTIR spectroscopy, scanning electron microscopy and contact angle measurements. It was found that solubility plays a crucial role in the spinnability of xylan extracts. Decrease in viscosity of arabinoxylan achieved by decreasing its concentration was found to improve the jet stability but at the same time, to reduce the diameter of spun fibre. Hydrophilicity of nanofibrous mats were strongly affected by the type of xylan and solvent used.


2022 ◽  
pp. 100254
Author(s):  
Jack Yang ◽  
Remco Kornet ◽  
Claudine F. Diedericks ◽  
Qiuhuizi Yang ◽  
Claire C. Berton-Carabin ◽  
...  

Author(s):  
Tero Leppänen ◽  
Pasi Rönkkö ◽  
Harri Haapasalo ◽  
Pekka Tervonen
Keyword(s):  

Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3133
Author(s):  
Iris Plioni ◽  
Argyro Bekatorou ◽  
Antonia Terpou ◽  
Athanasios Mallouchos ◽  
Stavros Plessas ◽  
...  

Fruit wastes and side-streams can be used for vinegar production to create added value for the agri-food sector and enhance farmer incomes and local economies. In this study, methods for vinegar production by wild and selected acetic acid bacteria (the quick starter Acetobacter aceti and the acid-resistant Komagataeibacter europaeus), free (FC) and immobilized (IC) on a natural cellulosic carrier, are proposed using sweet wine made from the industrial finishing side-stream (FSS) of Corinthian currants as raw material. The results showed all cultures can produce vinegar with 46.65 ± 5.43 g/L acidity, from sweet FSS wine containing 5.08 ± 1.19% alcohol. The effect of immobilization was more obvious in the case of the selected culture, presenting better acetification efficiency, both fresh and after cold storage for 2 months. The vinegars had an antioxidant capacity of 263.5 ± 8.4 and 277.1 ± 6.7 mg/L (as ascorbic acid) and phenolic content 333.1 ± 12.0 and 222.2 ± 2.9 mg/L (as gallic acid) (for FC and IC, respectively). They also had a rich volatilome (140 compounds identified by SPME GC-MS), with higher percentages of esters identified in vinegars made by IC. The results are encouraging for vinegar production with IC of a mixed A. aceti and K. europaeus culture.


2021 ◽  
Vol 9 ◽  
Author(s):  
Brita Asikanius ◽  
Anna-Stiina Jääskeläinen ◽  
Hanna Koivula ◽  
Petri Oinonen ◽  
Monika Österberg

Valorization of side streams offers novel types of raw materials to complement or replace synthetic and food-based alternatives in materials science, increasing profitability and decreasing the environmental impacts of biorefineries. Lignocellulose biomass contains lignin and carbohydrates that are covalently linked into lignin-carbohydrate complexes (LCCs). In biomass fractionation processes, these complexes are conventionally considered as waste, which hinders the biomass fractionation process, and they may solubilize into aqueous effluents. This study presents how LCCs, derived from pulp mill effluent, can be turned into valuable biopolymers for industrial polymer film applications. Free-standing composite films containing hydroxyethyl cellulose (HEC) and LCCs with varying molar mass, charge density and lignin/hemicellulose ratio were prepared to study the effect of LCC amount on mechanical properties and oxygen permeability. Increasing the LCC content increased the yield point and Young’s modulus of the films. Breaking strain measurements revealed a non-linear correlation with the LCC concentration for the samples with higher lignin than hemicellulose content. The addition of LCC enhanced oxygen barrier properties of HEC films significantly even at high relative humidity. The present research demonstrates how a currently underutilized fraction of the biorefinery side stream has the potential to be valorized as a biopolymer in industrial applications, for example as a barrier film for paper and board packaging.


Sign in / Sign up

Export Citation Format

Share Document