Structural determinants of the eosinophil cationic protein antimicrobial activity

2012 ◽  
Vol 393 (8) ◽  
pp. 801-815 ◽  
Author(s):  
Ester Boix ◽  
Vivian A. Salazar ◽  
Marc Torrent ◽  
David Pulido ◽  
M. Victòria Nogués ◽  
...  

AbstractAntimicrobial RNases are small cationic proteins belonging to the vertebrate RNase A superfamily and endowed with a wide range of antipathogen activities. Vertebrate RNases, while sharing the active site architecture, are found to display a variety of noncatalytical biological properties, providing an excellent example of multitask proteins. The antibacterial activity of distant related RNases suggested that the family evolved from an ancestral host-defence function. The review provides a structural insight into antimicrobial RNases, taking as a reference the human RNase 3, also named eosinophil cationic protein (ECP). A particular high binding affinity against bacterial wall structures mediates the protein action. In particular, the interaction with the lipopolysaccharides at the Gram-negative outer membrane correlates with the protein antimicrobial and specific cell agglutinating activity. Although a direct mechanical action at the bacteria wall seems to be sufficient to trigger bacterial death, a potential intracellular target cannot be discarded. Indeed, the cationic clusters at the protein surface may serve both to interact with nucleic acids and cell surface heterosaccharides. Sequence determinants for ECP activity were screened by prediction tools, proteolysis and peptide synthesis. Docking results are complementing the structural analysis to delineate the protein anchoring sites for anionic targets of biological significance.

2009 ◽  
Vol 421 (3) ◽  
pp. 425-434 ◽  
Author(s):  
Marc Torrent ◽  
Beatriz G. de la Torre ◽  
Victòria M. Nogués ◽  
David Andreu ◽  
Ester Boix

ECP (eosinophil cationic protein) is an eosinophil secretion protein with antipathogen activities involved in the host immune defence system. The bactericidal capacity of ECP relies on its action on both the plasma membrane and the bacterial wall. In a search for the structural determinants of ECP antimicrobial activity, we have identified an N-terminal domain (residues 1–45) that retains most of ECP's membrane-destabilizing and antimicrobial activities. Two sections of this domain, ECP-(1–19) and ECP-(24–45), have also been evaluated. All three peptides bind and partially insert into lipid bilayers, inducing aggregation of lipid vesicles and leakage of their aqueous content. In such an environment, the peptides undergo conformational change, significantly increasing their α-helix content. The bactericidal activity of the three peptides against Escherichia coli and Staphylococcus aureus has been assessed at both the cytoplasmic membrane and the bacterial envelope levels. ECP-(1–45) and ECP-(24–45) partially retain the native proteins ability to bind LPS (lipopolysaccharides), and electron microscopy reveals cell damage by both peptides. Interestingly, in the E. coli cells agglutination activity of ECP is only retained by the longest segment ECP-(1–45). Comparative results suggest a task distribution, whereby residues 1–19 would contribute to membrane association and destabilization, while the 24–45 region would be essential for bactericidal action. Results also indicate that ECP cytotoxicity is not uniquely dependant on its membrane disruption capacity, and that specific interactions at the bacteria wall are also involved.


1998 ◽  
Vol 26 (14) ◽  
pp. 3358-3363 ◽  
Author(s):  
J. B. Domachowske ◽  
K. D. Dyer ◽  
A. G. Adams ◽  
T. L. Leto ◽  
H. F. Rosenberg

2013 ◽  
Vol 57 (8) ◽  
pp. 3797-3805 ◽  
Author(s):  
David Pulido ◽  
Marc Torrent ◽  
David Andreu ◽  
M. Victoria Nogués ◽  
Ester Boix

ABSTRACTThere is an urgent need to develop new agents against mycobacterial infections, such as tuberculosis and other respiratory tract or skin affections. In this study, we have tested two human antimicrobial RNases against mycobacteria. RNase 3, also called the eosinophil cationic protein, and RNase 7 are two small cationic proteins secreted by innate cells during host defense. Both proteins are induced upon infection displaying a wide range of antipathogen activities. In particular, they are released by leukocytes and epithelial cells, contributing to tissue protection. Here, the two RNases have been proven effective againstMycobacterium vaccaeat a low micromolar level. High bactericidal activity correlated with their bacterial membrane depolarization and permeabilization activities. Further analysis on both protein-derived peptides identified for RNase 3 an N-terminus fragment that is even more active than the parental protein. Also, a potent bacterial agglutinating activity was unique to RNase 3 and its derived peptide. The particular biophysical properties of the RNase 3 active peptide are envisaged as a suitable reference for the development of novel antimycobacterial drugs. The results support the contribution of secreted RNases to the host immune response against mycobacteria.


2011 ◽  
Vol 392 (4) ◽  
Author(s):  
Anubha Singh ◽  
Janendra K. Batra

AbstractEosinophil granule proteins, eosinophil cationic protein (ECP) and eosinophil-derived neurotoxin are members of the RNase A superfamily, which play a crucial role in host defense against various pathogens as they are endowed with several biological activities. Some of the biological activities possessed by ECP have been attributed to its strong basic character. In the current study, we have investigated the role of five unique basic residues, Arg22, Arg34, Arg61, Arg77 and His64 of ECP in its catalytic, cytotoxic, antibacterial and antiparasitic activities. These residues were changed to alanine to generate single and double mutants. None of the selected residues was found to be involved in the RNase activity of ECP. The substitution of all five residues individually was detrimental for the cytotoxic, antibacterial and antiparasitic activities of ECP; however, mutation of Arg22 and Arg34 resulted in the most significant effects. The double mutants also had reduced biological activities. All ECP mutants that had significantly reduced toxicity also had reduced membrane destabilization activity. Our study demonstrates that Arg22, Arg34, Arg61, Arg77 and His64 of ECP are crucial for its membrane destabilization activity, which appears to be the underlying mechanism of its cytotoxic, antibacterial and antiparasitic activities.


2010 ◽  
Vol 98 (11) ◽  
pp. 2702-2711 ◽  
Author(s):  
María Flor García-Mayoral ◽  
Mohammed Moussaoui ◽  
Beatriz G. de la Torre ◽  
David Andreu ◽  
Ester Boix ◽  
...  

2021 ◽  
Author(s):  
Ayush Attery ◽  
Irene Saha ◽  
Prafullakumar Tailor ◽  
Janendra K Batra

Eosinophil cationic protein (ECP), eosinophil derived neurotoxin (EDN), and human pancreatic ribonuclease (HPR) are members of the RNase A superfamily having similar catalytic residues and diverse functions. Alarmins are the endogenous mediators of innate immunity which activate or alarm the adaptive immune system by activating antigen presenting cells (APCs). EDN acts as an alarmin molecule and plays an important role in innate as well as adaptive immunity. EDN displays chemotactic activity for dendritic cells (DCs) and activates them, has antiviral and antiparasitic activities, and is rapidly released from immune cells. HPR only displays chemotactic activity while no such activity has been reported for ECP. In this study we show that ECP displays the chemotactic activity comparable to that of HPR and EDN. ECP also interacts with TLR-2 to activate NF-κB/AP-1 expression like EDN. The RNase activity of ECP, EDN and HPR, and basicity of ECP were found to be crucial determinants for their chemotactic activity for APCs, however for the DC maturation activity, RNase activity was not found to be essential. Bovine RNase A did not show any chemotactic activity despite having a very high RNase activity indicating that other determinants in addition to the RNase activity are involved in the chemotactic activity of ECP, EDN and HPR. The current study establishes that ECP also can act like an alarmin.


Sign in / Sign up

Export Citation Format

Share Document